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Abstract—Visual exploration of flow fields is important for studying dynamic systems. We introduce semantic flow graph (SFG), a

novel graph representation and interaction framework that enables users to explore the relationships among key objects (i.e., field

lines, features, and spatiotemporal regions) of both steady and unsteady flow fields. The objects and their relationships are organized

as a heterogeneous graph. We assign each object a set of attributes, based on which a semantic abstraction of the heterogeneous

graph is generated. This semantic abstraction is SFG. We design a suite of operations to explore the underlying flow fields based on

this graph representation and abstraction mechanism. Users can flexibly reconfigure SFG to examine the relationships among groups

of objects at different abstraction levels. Three linked views are developed to display SFG, its node split criteria and history, and the

objects in the spatial volume. For simplicity, we introduce SFG construction and exploration for steady flow fields with critical points

being the only features. Then we demonstrate that SFG can be naturally extended to deal with unsteady flow fields and multiple types

of features. We experiment with multiple data sets and conduct an expert evaluation to demonstrate the effectiveness of our approach.

Index Terms—Flow visualization, heterogeneous graph, semantic abstraction, critical points, vortex cores, FTLE, field lines.

✦

1 INTRODUCTION

Effectively displaying field lines (streamlines for steady flow

fields and pathlines for unsteady flow fields) faces significant

challenges, especially considering the ever-growing size and com-

plexity of flow data generated from scientific simulations. One

fundamental challenge is occlusion and clutter, which stems from

projecting 3D field lines to 2D screen. To reduce occlusion and

clutter so that flow patterns can be depicted clearly, researchers

commonly adopt an approach that balances field line densities

among different spatiotemporal regions through field lines seeding

or selection. However, this approach could only alleviate but

not eliminate the problem, since capturing flow patterns (which

demands field lines to pass different flow features) and reducing

occlusion and clutter (which calls for less field lines for clarity) are

somewhat conflicting with each other. Often, we have to reduce

the field lines passing through unimportant regions in order to

enhance the visual perception of important regions.

Important field lines or regions are often referred to as features.

Although there is no universal definition of features, flow patterns

related to critical points are of crucial interest. A critical point

is a singularity in a flow field where the velocity vanishes.

Flows around the vicinity of critical points are often compli-

cated. Without explicitly capturing them using streamlines, we

can hardly infer them from their neighboring regions. Therefore,

for steady flow fields, a major goal of streamline visualization is

to reveal the flow patterns around critical points and investigate

the connections among these critical points. For unsteady flow
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fields, it is also important to discover the temporal development

of critical points detected at each time step. Previous approaches

were developed to capture these patterns [36] and reveal their

connections [28]. However, they usually serve specific purposes,

provide very limited interaction support, and fail to meet various

exploration needs.

In this paper, we present semantic flow graph (SFG), a novel

solution that leverages techniques from information visualization

and social network analysis to enable semantic-aware exploration

of relationships among field lines, features, and spatiotemporal

regions. Most early works in scientific visualization focused on

extracting features and developing their relationships to construct

various graph representations [29], [30]. These representations

provide an abstracted overview of the underlying scientific data

sets. We take a drastically different direction: instead of focusing

on the construction of a fixed graph structure or hierarchy, we

allow flexible grouping of objects through dynamic graph con-

struction and shift our focus to graph exploration. With a rich

set of interactions, users are given the unprecedented flexibility

to customize the graph according to their own needs in the data

exploration and knowledge discovery process.

Our approach is inspired by the exploration of heterogeneous

graphs [24] in social network analysis. A heterogeneous graph

consists of different types of nodes and edges, and each type is

associated with a set of attributes. For example, in a bibliographic

network, three types of nodes are usually considered along with

their attributes: authors with affiliations, papers with topics, and

venues with locations. Edges represent the relationships among the

nodes (e.g., authoring or co-authoring). Similarly, our approach

considers each field line, feature, and region as an object, and

organizes their relationships as a heterogeneous graph, as shown

in Figure 1. Each object in SFG carries attribute information,

such as the average curvature values for streamlines, types for

critical points, and velocity entropy values for regions. We then

utilize these attribute information to aggregate objects of the
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Fig. 1: Semantic flow graph (SFG) interface showing the exploration of the five critical points data set. (a) The tree-like history view.

The three children of the pseudo-root are at the highest level of abstraction, each of which corresponds to a type of nodes. The label

on a node indicates the criterion used to split the node. (b) The graph view of the current SFG. All types of critical points are selected

and highlighted by halos, and their connectors are indicated by red circular percentage bars. The edges indicate connections between

selected nodes and their connectors. (c) The corresponding volume view. The critical points and the streamlines connecting them are

shown. Different colors of critical points and streamlines indicate different corresponding nodes.

same category into nodes and generate a visual abstraction of

the heterogeneous graph. This abstraction not only reduces visual

clutter, but also assigns the specific semantics to each node. If

needed, the hierarchical information of field lines or regions can

be incorporated into this framework by including the cluster index

as an attribute in the description of semantics. For simplicity,

throughout the paper, we describe the SFG construction and explo-

ration in the context of steady flow fields with critical points being

the only features. The construction of the SFG to handle multiple

types of features for unsteady flow fields will be explained in

details when the specific data set is discussed in Section 5.

We specifically design a suite of operations for SFG to explore

flow fields. The operations include two kinds of splits (attribute-

based and structure-based) that involve structural changes of the

SFG in order to observe features at different levels, and two kinds

of inspections (neighborhood and connector) that examine the

relationships among nodes under the current configuration. All

these operations are performed under the current context of SFG.

The split operations allow the nodes to be further divided and their

objects to be regrouped. This kind of dynamic construction of SFG

provides great flexibility to investigate relationships among objects

at different levels and in different ways. As shown in Figure 1, we

create three views: a graph view (Figure 1 (b)) to show the current

SFG, a history view (Figure 1 (a)) to present the node split history,

and a volume view (Figure 1 (c)) to visualize the objects in the

original 3D space. Brushing and linking allows users to build the

connection among these views.

The contributions of our work are the following. First, to the

best of our knowledge, we are the first to introduce the concept

of semantic graph for flow visualization from which we propose

an interaction framework for dynamic graph construction. With

a set of newly-designed operations, we enable semantic-aware

knowledge discovery to explore the relationships among field

lines, features, and spatiotemporal regions. Second, we design a

history view that effectively captures the node split history, so that

users can better understand the structure of the current SFG and

interact with the graph more conveniently. Finally, we present case

studies using multiple data sets and conduct an expert evaluation

to demonstrate that a variety of tasks can be performed more

efficiently and effectively using our approach.

2 RELATED WORK

Flow Field Exploration Techniques. Visual exploration of 3D

flow fields is an important topic in flow visualization. Most works

focused on identifying and locating certain flow pattens. For

instance, Heiberg et al. [6] selected a set of structures and located

similar patterns in an input vector field. They defined a similarity

measure to compare the predefined flow patterns and the local

neighborhood of each point in the vector field. Schlemmer et al.

[19] utilized invariant moments to describe and compare 2D flow

fields, which is invariant under translation, scaling and rotation.

They constructed a multiscale moment pyramid to match patterns

at different scales. Bujack et al. [1] later introduced a definition of

moment invariants for 3D vector fields. These approaches detect

flow patterns by directly comparing subdomains of vector fields.

Other approaches explore the flow patterns using streamlines.

Rössl and Theisel [15] transformed a vector field into a set

of 2-manifolds by mapping streamlines to points in Rn space.

Their mapping preserves the Hausdorff distance in the original

space and provides a compact visualization of the characteristic

flow geometry and topology. Tao et al. [26] defined a similarity

measure for streamline segments based on the registration of their

respective point sets. The streamline segments are clustered and

represented by a set of shape characters so that flow patterns

can be queried in a textual manner. Researchers also investigated

into sketch-based interface for intuitive flow field exploration

using streamlines. Schroeder et al. [20] designed a sketch-based

interface for illustrating 2D vector fields. The interface allows the

illustrator to draw directly on top of the data for fine tuning of

streamline density and length. Wei et al. [33] proposed a similarity
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measure based on curvature and torsion along streamlines. Their

interface allows users to sketch a 2D curve and match projected

streamlines under the current view. They also used agglomerative

hierarchical clustering to create streamline templates and support

on-the-fly partial streamline matching. Salzbrunn and Scheuer-

mann [16] described streamline predicates that assign boolean

values to streamlines with respect to features. Using the predicates,

the streamlines can be filtered to reveal structures related to user-

selected features.

Critical Point Detection and Visualization. Critical points

characterize interesting flow patterns in the vector field. Locating

and classifying critical points has attracted a significant amount

of attention. Scheuermann et al. [18] proposed methods to locate

high-order critical points in 2D vector fields using Clifford alge-

bra. Mann et al. [13] presented an octree based solution using

geometric algebra for finding critical points in 3D vector fields.

Klein and Ertl [8] determined the scales of critical points by track-

ing their locations in the scale space. The Gaussian scale space

is formed by a series of smoothed versions of the original vector

field. Other works focused on visualizing flow patterns related to

critical points. Löffelmann et al. [9] proposed two representations

to visualize flow patterns near critical points. The first one encodes

the order of magnitude of eigenvalues of the Jacobian matrix along

the characteristic trajectories, and the second one stochastically

seeds streamlets on a small sphere around critical points. Ye et

al. [36] designed different seeding templates for different types of

critical points. The shape of template can change depending on the

degree of a critical point transitioning from one type into another.

Theisel et al. [28] presented saddle connectors that visualize the

topological skeleton of vector fields. Iconic representations are

used for critical points, and the specific streamlines connecting

different critical points are displayed.

Heterogeneous Graph Exploration. Visual exploration of

heterogenous graphs is well studied in information visualization.

Wattenberg [32] introduced PivotGraph, an attribute-centric node-

link visualization of heterogeneous graphs. PivotGraph uses a roll-

up operation to aggregate the nodes according to one or two user-

specified attributes. The aggregated nodes are placed at 2D grid

points according to the attribute values. Shen et al. [21] presented

OntoVis that considers both semantic abstraction and structural

abstraction based on the ontology graph of the heterogeneous

network. The network is filtered by selecting a type of nodes in

the ontology graph, and other nodes become attributes of selected

nodes. OntoVis further applies structural abstraction to prune the

graph for clear observation. Shneiderman and Aris [23] designed

semantic substrates to place nodes on multiple non-overlapping

regions based on their attributes. Users can use sliders to adjust the

visibility of nodes for clutter reduction. Shi et al. [22] proposed

OnionGraph that groups the nodes in a top-down manner using

both topology and attribute information. Structural equivalence

is used to simplify the graph, and multiple iconic symbols are

designed to represent the semantic information of nodes.

Graph-based Flow Field Exploration. Closely related to

our work are two graph-based exploration techniques for flow

visualization: flow web presented by Xu and Shen [35] and

FlowGraph presented by Ma et al. [11], [12]. In flow web, each

node represents a region in the domain and the weight of an edge

between two nodes indicates the number of particles traveling

between the two regions. Similar representations have been used

for workload estimation in parallel and out-of-core streamline

tracing [2]. FlowGraph further adds one more type of nodes (i.e.,

L-node for streamline cluster), and two types of edges (i.e., L-

L edge between two L-nodes, and L-R edge between an L-node

and an R-node). Therefore, FlowGraph provides a more complete

picture than flow web, as it allows users to explicitly investigate

the relationships among streamline clusters as well. However,

these two approaches only emphasize the overall structure of

flow fields. The interactions are constrained to splitting nodes in

the precomputed hierarchy and exploring through brushing and

linking between the graph view and volume view. These fixed

graph structures could not be changed to meet different needs,

e.g., queries of streamlines or regions with certain properties, not

to mention the investigation of their relationships. Moreover, these

approaches do not explicitly capture and encode critical points. For

detailed comparison between our SFG and these closely related

approaches, please refer to Section 5.2.

3 SEMANTIC FLOW GRAPH

In many applications of information visualization and visual

analytics, semantic abstraction has been shown to be an effective

means for visualizing heterogeneous graphs. In this section, we

briefly introduce the concept of heterogeneous graphs and their

semantic abstraction. Then we present our graph construction and

discuss the operations designed for flow field exploration.

We study three types of fundamental objects in flow fields:

field lines, features, and spatiotemporal regions. Each node is

associated with semantic information named attributes, and the

connections among nodes are captured in a heterogeneous graph.

Semantic flow graph (SFG) is a semantic abstraction of such a het-

erogeneous graph. To distinguish the similar concepts, throughout

this paper, we use “object” to refer to a field line, a feature, or a

region, and “node” to refer to an aggregation of objects using a

certain user-specified attribute. Similarly, “link” is used to indicate

that one object is related to another, and “edge” is used to indicate

the connection between two nodes. In other words, “object” and

“link” are concerned with the underlying heterogeneous graph,

which is mainly used for computational purpose; while “node”

and “edge” are concerned with the visualization of SFG, i.e., the

semantic abstraction being displayed and interacted with.

3.1 Terminology and Notation

Formally, we define a heterogeneous graph as GH = (O,L), where

O = {o1, . . . ,o|O|} is the set of all objects and L = {l1, . . . , l|L|}
is the set of all links between objects. Each object oi ∈ O has

a type and a set of attribute values associated with it, denoted

by T (oi) and A(oi) = {a1(oi), . . . ,a|A(oi)|(oi)}, respectively. Note

that the number of attributes may vary for different types of

objects. We denote the semantic abstraction of GH as GS = (V,E),
where V = {v1, . . . ,v|V |} denotes a node set and E = {e1, . . . ,e|E|}
denotes an edge set. Every node vi ⊂ O is a semantic aggregation

of objects of the same type based on the values of some selected

attributes. An edge ei j exists between two nodes vi and v j if any

of their objects are linked, i.e., ∃ or ∈ vi and os ∈ v j, lrs ∈ L. We

define the ontology graph associated with GH as GO = (TV ,TE),
where TV = {tv1, . . . , tv|TV |} is the set of node types and TE =
{(tvi, tv j) | tvi, tv j ∈ TV} is the set of edge types. The ontology

graph is the highest-level semantic abstraction of a multivariate

graph, by considering each node type tvi as an aggregation of all

its objects, i.e., O(tvi) = {o | o ∈ O,TV (o) = tvi}, where O(tvi)
represents all objects of type tvi.

Another way to interpret the relationships among GH , GS

and GO is that GH and GO are fixed graphs which represent the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

notation explanation

GH heterogeneous graph
GS semantic graph
GO ontology graph
O(vi) all objects in a node vi

O(Ṽ ) all objects in a set of nodes Ṽ
V (oi) the corresponding node of an object oi

V (Õ) the corresponding nodes of a set of objects Õ
N(oi) all neighboring objects of an object oi

N(Õ) all neighboring objects of a set of objects Õ
N(vi) all neighboring nodes of a node vi

N(Ṽ ) all neighboring nodes of a set of nodes Ṽ

TABLE 1: Key notations used in this paper.

graph data at the finest and coarsest levels of detail respectively,

while GS is a dynamic graph which represents a certain level of

detail in between GH and GO. Therefore, semantic exploration

becomes the key to generate meaningful forms of GS under various

considerations.

We also define the following notations. The objects in a node

vi is denoted as O(vi), and all objects in a set of nodes Ṽ is

denoted as O(Ṽ ) =∪vi∈Ṽ O(vi). Each object oi belongs to only one

node v j during the aggregation, which is denoted as V (oi) = v j.

For a set of objects Õ, we denote the corresponding nodes as

V (Õ) = ∪oi∈ÕV (oi). We denote the neighbors of an object oi as

N(oi) = {o j | o j ∈ O and li j ∈ L}, and the neighbors of a set of

objects Õ as N(Õ) = ∪oi∈ÕN(oi) \ Õ. Note that N(oi) or N(Õ)
may include objects from different types. Similarly, the neighbors

of a node vi and the neighbors of a set of nodes Ṽ are denoted as

N(vi) and N(Ṽ ), respectively. For easy reference, we summarize

the key notations in Table 1.

3.2 SFG Construction

In this section, without loss of generality, we describe the con-

struction of SFG in the context of steady flow fields with critical

points being the only features. Specifically, we use three types of

objects in the SFG: streamlines, critical points, and spatial regions.

In certain application domains, additional types of features can

be flexibly included in the SFG by appropriately linking them to

the existing objects. In addition, SFG can be naturally extended

to handle unsteady flow fields by replacing streamlines with

pathlines and adding an additional “time step” attribute to regions

and features. To understand the temporal evolution of flows, we

further incorporate two well-accepted tools: finite-time Lyapunov

exponents (FTLE) and feature flow fields [27]. These extensions

can be established under the same construction described here

with slightly different configurations (node types and attributes).

In Section 5.1, we discuss a specific configuration when the related

data set and case study are described. Corresponding to the three

types of objects for steady flow fields, we define three kinds of

nodes for SFG:

• L-nodes: An L-node is an aggregation of streamlines

grouped by user-specified attributes. For a streamline,

we consider the following attributes: average curvature,

average torsion, entropy, and cluster index. We consider

two distance measures for streamline clustering: the mean

of the closest point (MCP) distances and the Fréchet

distance. The entropy of a streamline is computed using

the velocities at all sample points along the streamline,

considering both velocity directions and magnitudes.

• P-nodes: A P-node is an aggregation of critical points.

We consider two attributes associated with a critical point:

scale and type. The scale of a critical point indicates its size

of influence. In 3D, there are nine types of critical points

determined by the Jacobian matrix at one point [36]: sink,

source, center, attracting spirals, repelling spirals, attract-

ing saddles, repelling saddles, attracting spiral saddles, and

repelling spiral saddles.

• R-nodes: An R-node is an aggregation of spatial regions. A

spatial region has the following attributes: average velocity

magnitude, average divergence, average curl magnitude,

and entropy. The entropy of a region is computed using the

velocities at all grid points inside the region. Moreover, if

scalar fields are associated with the vector field, we further

include the average of those scalar values in the region as

additional attributes.

Different types of objects are linked according to certain

simple criteria. An edge exists between two nodes, if at least one

link exists between their objects. The weight of an edge is the sum

of weights of all links between objects in the two incident nodes.

Note that since we only define the relationships among different

types of objects, there is no edge between nodes of the same type.

We define three kinds of edges for SFG:

• L-P edges: An L-P edge is formed between an L-node

and a P-node, indicating that one or more streamlines in

this L-node are linked to certain critical points in the P-

node. The link between a streamline and a critical point

is determined by the minimal Euclidean distance from any

sample point on the streamline to the critical point. If this

minimal distance is smaller than a predefined threshold,

the streamline and the critical point are considered to

be linked. Note that we do not restrict our attention to

the end points of streamlines, as streamlines passing the

neighborhood of saddles do not terminate at the critical

points. The link weight is given by subtracting the distance

from the predefined threshold, so that the weights are

non-negative and a larger weight corresponds to a smaller

distance.

• L-R edges: An L-R edge is formed between an L-node

and an R-node, indicating that one or more streamlines in

the L-node pass through certain regions in the R-node. A

streamline is linked to a spatial region if it passes through

that region, i.e., any of its sample points falls into the

region. This link is a boolean relationship and we assign a

constant weight for it. The actual number of sample points

on a streamline falling into the region is not taken into

consideration.

• R-P edges: An R-P edge is formed between an R-node and

a P-node, indicating that one or more regions in the R-node

contain certain critical points in the P-node. Similar to the

links between streamlines and regions, this kind of link is

boolean and thus carries a constant weight.

3.3 SFG Operations

We design a suite of operations to explore the relationships among

objects. When a node is selected, users can perform attribute-

based split based on a specified attribute. When a set of nodes

are selected, users can perform structure-based split that splits

all other nodes according to the connections among their objects

and the selected nodes. They can also perform neighborhood

inspection that finds all nodes connecting to any of the selected

nodes, or connector inspection that finds all nodes connecting to
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any two of the selected nodes. All operations are performed to the

nodes that currently exist in the SFG.

Attribute-based Split. Given a selected node vi, attribute-

based split divides it based on a user-specified attribute a j. For

an attribute whose value set is a range of real numbers, we

discretize it into five categories labeled as “high”, “medium-

high”, “medium”, “medium-low”, and “low” so that it can be

enumerated. Let {a j1, . . . ,a jp} be all possible values of attribute

a j over the entire data set. This operation produces a set of nodes

{vi1, . . . ,vip}, where O(vik) = {o ∈ O(vi) | a j(o) = a jk}. After the

split, {vi1, . . . ,vip} will be added into GS, and vi will be removed.

Note that if a new node vik does not contain any object, that

node will not be added. The edges will be updated accordingly:

all edges connecting vi will be removed, and the edges between

the previously existing nodes and the set of new nodes will be

computed and added into SFG. Each newly-added node contains

objects with similar attribute values, so that users can further

investigate into the impact of those attributes. For example, users

may split the P-node in the ontology graph according to the types

of critical points. Each new node added contains critical points of

the same type. The resulting graph will help users further study the

relationships among different types of critical points in relation to

other objects.

Structure-based Split. Given a set of selected nodes Ṽ ⊂ V ,

structure-based split divides each of the other nodes in GS by

partitioning its objects according to the concept of structural

equivalence [10]. Two nodes vi and v j are structurally equivalent,

if they have exactly the same neighbor set, i.e., N(vi) = N(v j). In

our scenario, we consider structural equivalence for two objects oi

and o j with respect to the selected node set Ṽ , i.e., V (N(oi))∩Ṽ =
V (N(o j))∩Ṽ . Let P(Ṽ ) = {P(Ṽ )1, . . . ,P(Ṽ )p} be the power set of

Ṽ . For each node vi /∈ Ṽ , this operation produces a set of nodes

{vi1, . . . ,viq}, where O(vik) = {o ∈ O(vi) |V (N(o))∩Ṽ = P(Ṽ )k}.

Similar to attribute-based split, the non-empty nodes and their

corresponding edges will be updated. With this operation, we

allow users to observe which objects are connected to individual

nodes, and which objects are shared in the neighborhood of

different nodes. For example, users may select two P-nodes and

perform structure-based split. From the resulting graph, they will

be able to compare the streamlines connecting to each P-node

only, and the streamlines connecting to both.

Neighborhood Inspection. Given a set of selected nodes Ṽ ⊂
V , neighborhood inspection finds their neighbors N(Ṽ ). For each

neighboring node vi ∈ N(Ṽ ), we draw a circular percentage bar to

indicate the percentage of objects in vi that are connected to any

object in O(Ṽ ). We define the neighborhood percentage as

NP(vi) =
|O(vi)∩N(O(Ṽ ))|

|O(vi)|
. (1)

We highlight the edges between selected nodes and their neigh-

bors. To better understand the relationships among the selected

nodes and the other nodes, we further arrange all nodes in an

egocentric layout, with the selected nodes placed at the center.

Other nodes are placed on concentric circles at different layers

according to their distances to the selected nodes. We compute the

distance based on the underlying heterogeneous graph GH , instead

of the current semantic graph GS being displayed. Let dGH
(op,oq)

be the graph’s geodesic distance between two objects op and oq.

We define the distance between nodes vi and v j as

dGH
(vi,v j) = min

op∈O(vi),oq∈O(v j)
dGH

(op,oq). (2)

v1 v2 v3 v'1 v'2 v'3

(a) (b)

Fig. 2: (a) An L-node connector v2. One streamline in v2 connects

two critical points in the two P-nodes v1 and v3. (b) An L-node

v′2 connects to P-nodes v′1 and v′3, but v′2 is not a connector. No

connection exists between critical points in v′1 and v′3 through a

streamline in v′2.

Similarly, the distance between a node vi and a set of selected

nodes Ṽ is defined as

dGH
(vi,Ṽ ) = min

op∈O(vi),oq∈O(Ṽ )
dGH

(op,oq). (3)

Note that we do not use the distance based on GS, since it may

provide misleading information. For example, consider the simple

heterogeneous graph with three nodes shown in Figure 2 (b). v′2
connects to v′1 and v′3, since one streamline in v′2 connects to

a critical point in v′1, and the other connects to another critical

point in v′3. However, none of these two streamlines links to

critical points in both v′1 and v′3, That is, starting from any critical

point in v′1, we cannot follow a streamline in v′2 to reach any

critical point in v′3, and vice versa. Therefore, dGH
(v′1,v

′
3) = ∞

while dGS
(v′1,v

′
3) = 2. As a contrast, for Figure 2 (a), we have

dGH
(v1,v3) = dGS

(v1,v3) = 2.

Connector Inspection. A connector is a node that serves as

a bridge by building the connection between two selected nodes.

Given a set of selected nodes Ṽ ⊂ V , connector inspection finds

all connectors vi that connect any two nodes v j and vk in Ṽ . We

define the set of connectors as

C(Ṽ ) = {vi ∈ N(Ṽ ) | ∃ v j,vk ∈ Ṽ ,dGH
(vi,v j) = dGH

(vi,vk) = 1}.
(4)

Similar to neighborhood inspection, connectors are determined

based on GH and then mapped back to the nodes in GS for

visualization. We highlight the edges between selected nodes and

their connectors. Note that C(Ṽ ) ⊂ N(Ṽ ). For each connector

vi ∈ C(Ṽ ), we draw a circular percentage bar to indicate the

percentage of objects that connect to objects in at least two

different selected nodes v j and vk. We compute the connector

percentage as

CP(vi) =
|{o ∈ O(vi) | ∃ v j,vk ∈ Ṽ ,o ∈ N(O(v j))∩N(O(vk))}|

|O(vi)|
.

(5)

This operation helps users understand the relationships among

selected objects through other objects, which is especially ben-

eficial when direct relationship is difficult to define. For example,

two critical points can be connected by a set of streamlines; and

two streamline clusters can be connected by a common region. In

Figure 2, v2 shown in (a) is a connector but v′2 shown in (b) is not.

For the same reason, connectors are computed at the object level.

Note that connectors may not exist for every pair of selected

nodes. To identify the most prominent connectors that connect

pairs of selected nodes, we further filter these node pairs by their

strength. We define the connection strength between a pair of

nodes v j and vk as the number of objects through which they

can be connected, i.e., |N(O(v j))∩N(O(vk))|. If the strength is

smaller than a user-specified threshold, the objects connected to
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(a) (b) (c)

Fig. 3: Node split and neighborhood inspection. (a) The initial ontology graph. (b) The splitting of the P-node using the “type” attribute.

Two nodes are selected for neighborhood inspection. The dashed circles and arrows indicate node movements for generating the

egocentric layout. (c) The resulting egocentric layout of the same SFG shown in (b).

only v j and vk will be removed from connector inspection results.

Furthermore, a node will be removed from the queried nodes Ṽ ,

if its connection strength to any other node in Ṽ is smaller than

the threshold. Using this filtering function, users can first select

a relatively large set of nodes to query the connectors, and then

gradually narrow down to the significant ones.

Since our visualization displays the connections among all

queried nodes in Ṽ , it is impossible for users to distinguish

connectors between different pairs of nodes. We further provide

connector iterator to go through each of the node pairs in de-

scending order of their strength. Users can use the mouse wheel

to switch back and forth among all the node pairs.

4 VISUALIZATION AND INTERACTION DESIGN

Our SFG interface consists of three views: the graph view, history

view, and volume view. All these three views are connected

through brushing and linking: when users interact with one view,

the other two views will be dynamically updated. In this section,

we describe the design of each view and the interactions provided

in the context of steady flow fields.

4.1 Graph View

The graph view shows the current SFG, as shown in Figure 3. The

three types of nodes are displayed in different styles: blue circles

for L-nodes, orange pentagons for P-nodes, and green squares for

R-nodes. The three types of edges are displayed in different colors:

blue for R-P edges, orange for L-R edges, and green for L-P edges.

We design two node highlighting schemes: the halos are used to

indicate the selected nodes, while the circular percentage bars are

used to highlight the neighbors (connectors) when neighborhood

inspection (connector inspection) is performed. To better represent

the nodes at different graph distances to the selected nodes, an

egocentric layout is used in neighborhood inspection; while in

other cases, a standard layout is used to reveal the connections

among all nodes.

Standard Layout. For the standard layout, we implement the

algorithm presented by Gansner et al. [4] using stress majorization.

This algorithm determines node positions in the 2D screen space

by preserving their graph-theoretical distances. To better maintain

the user’s mental map when SFG changes, we further develop

an incremental layout update. The basic idea is to introduce an

additional energy term that forces the previously existing nodes

to stay close to their original positions after an update. We refer

interested readers to online graph drawing approaches [3], [14] for

more sophisticated solutions.

Egocentric Layout. The egocentric layout applies when

neighborhood inspection is performed. This layout provides a

guidance for users to determine how to further discover the

relationships among the selected nodes and other nodes. It aligns

the nodes at different layers of concentric circles according to their

distances to the selected nodes (Equation 3). The selected nodes

are placed at the innermost layer, their 1-hop neighbors are placed

at the second layer, 2-hop neighbors are placed at the third layer,

and the rest of nodes are placed at the outermost layer. The 1-hop

neighbors contain the objects directly related to the selected nodes

while the 2-hop neighbors are candidates to inspect connectors

between them and the selected nodes. For the rest of nodes, their

relations to the selected nodes are often not interesting, since they

are not directly related to the selected nodes, and no connector can

be found between any of them and the selected ones. For example,

in Figure 3 (c), we can see that both the R-node and the L-node

are directly connected to the two types of critical points. No other

types of critical points are in the 1-hop neighborhood, as no direct

connection exists between critical points in our graph definition.

But connectors exist between four types of critical points and

the two selected types. Only one type of critical point cannot be

connected to the selected nodes through streamlines or regions,

and it is placed at the outermost layer. We use dashed circles

to indicate different layers of nodes. However, we do not draw a

dashed circle explicitly for the outermost layer. This is to avoid the

possible misunderstanding that those nodes have the same distance

to the selected nodes.

Starting from the original layout, we generate the egocentric

layout by moving the nodes to the desired circle along the

direction connecting itself and the center of the circle, as shown

in Figure 3 (b). To avoid clutter, the nodes are placed evenly on

the circle, while preserving their relative order along the circle.

This maintains a smooth transition from the original layout to the

egocentric layout. For example, in Figure 3 (b), the four nodes

in the 2-hop neighborhood move along the purple arrows to the

purple circle. For a more balanced layout, the nodes are evenly

spaced on the circle, while preserving their relative order along

the circle, as shown in Figure 3 (c).

Node Labels. For large enough nodes, we display labels to

provide their basic information, as shown in Figure 4 (a). Each

label contains the number of objects in the node, and the associated

semantic information. The number of objects is always displayed
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(a) (b)

Fig. 4: Node label. (a) The node with text label and split guidance

for attributes. (b) The detailed label information of the same node

when the node is hovered.

at the center of the node, if not overlapped with other labels.

With the limited screen space, only the most important semantic

information is displayed, including the types of critical points, and

the low or high values for scalar attributes. To place the label of a

node, we first compute its size, as indicated by the red rectangle

in Figure 4 (a). Then, a compact neighborhood (the red dashed

rectangle) below the center of the node is searched to place the

label, so that it will not overlap with existing labels or exceed

the boundary. The labels are placed in descending order of node

size. A label will not be displayed if no location that fulfills the

requirement can be found in the neighborhood.

When a node is hovered, we show its label with detailed

information including the node type, the number of objects within,

and all associated semantic information. If the objects in the node

share the same value category for an attribute, a predefined name

for that value will be displayed (e.g., “low entropy” in Figure 4

(b)). Otherwise, only the attribute name will be shown, indicating

that the node can be further split using that attribute.

Split Guidance. Even the number of nodes can be greatly

reduced after semantic abstraction, the cognitive efforts for users

could still be huge as they need to decide how to split the nodes

and expand the graph. Following the idea of scented widgets

[34], we provide split guidance which gives navigation cues to

users about the amount of information added when splitting a

node v using each attribute. Assume that {v1, . . . ,vq} are the

nodes generated by splitting a node v according to some attribute

a, the added information is measured by the entropy of object

distribution over the newly-generated nodes. Specifically, let pi

be the probability of an object in vi after the split, given by

pi = |vi|/|v|. The entropy of splitting node v using attribute a is

computed as H(v,a) =−∑ pi log pi.

We design two ways to visualize split guidance. First, it is

drawn as a bar chart at the upper-right corner of a node, as shown

in the yellow rectangle of Figure 4 (a). The size of the bar chart

is proportional to the radius of the node. The bar chart will not

be displayed if it is too small. Second, it is indicated by multiple

grayscale squares on the left side of the label when the node is

hovered, as shown in Figure 4 (b). The black (white) implies that

the entropy is high (low). A box with a red cross indicates that all

objects in the node share the same attribute value category, so the

node cannot be further split according to that attribute.

Edge Filtering. The SFG can be dense and cluttered, since

two nodes are connected if any two of their objects are linked. This

hinders the observation of important connections. Therefore, we

introduce two types of edge filtering to reduce the number of edges

displayed. First, users may manually specify a threshold for each

type of edges to indicate the maximum number of edges to display,

or choose to completely hide a type of edges. Edges of each type

are ordered by their weights to ensure that the most important

connections will be visible. By default, we display 20 edges

with the largest weights. Second, we automatically determine the

edge types of interest based on the operation being performed.

Specifically, when a node is split or neighborhood inspection is

performed on a set of nodes of the same type, we only display the

edges related to this type. For example, when an L-node is split or

the neighborhood of a set of L-nodes is inspected, we consider the

connections between the L-nodes and the other two types of nodes

to be more interesting, and the connections between P-nodes and

R-nodes to be less interesting. In this case, we will only display

L-P edges and L-R edges.

Graph Exploration. The exploration of SFG always starts

with the ontology graph, as shown in Figure 3 (a). Users may

select a node and an attribute to perform attribute-based split. For

example, we split the P-node using the “type” attribute, and the

graph is updated accordingly. Users may select a set of nodes

to perform other operations. If structure-based split is performed,

we update the SFG by highlighting the edges connecting the new

nodes and the selected nodes, so that their relationships are easy to

track. If neighborhood inspection is performed, we highlight the

neighbors with circular percentage bars and rearrange all nodes

into the egocentric layout. If connector inspection is performed,

we highlight the connectors with circular percentage bars but the

layout stays the same for stable viewing. For the two inspection

operations, the volume view will also be updated to show the

objects connected to the selected nodes. After each operation, if

the graph layout is updated, we show an animated transition that

gradually transits from the previous layout to the new one.

4.2 History View

The history view visualizes the node split history as a tree. We

display different types of nodes following their styles shown in the

graph view, but in the same size to keep the tree visually organized.

Initially, a tree corresponding to the ontology graph is shown. This

tree has a pseudo-root with three children representing the three

types of nodes. After each split, the newly-generated nodes will

be added into the tree as the children of the node being split. The

criterion to split a node will be displayed: if a node is split based

on an attribute, the name of that attribute will be shown; if a node

is split based on structure, we display “structure” on that node.

The children of an internal node are ordered according to the split

criterion as well. Specifically,

• if the internal node is split based on a nominal attribute

(e.g., the type of critical points or the cluster index of

streamlines), the children are arranged in descending order

of their numbers of objects, with the child containing the

most number of objects placed at the top;

• if the internal node is split based on an ordinal attribute, the

children are arranged in descending order of that attribute’s

category, with the child containing objects with the highest

attribute values placed at the top; and

• if the internal node is split based on structure, the children

are ordered by the lexicographic order of their connecting

subsets, with the child connecting to all of the selected

nodes placed at the top.

Note that all the leaves in this tree are the nodes of the current

SFG. The history view allows users to track, step by step, how the

nodes are split from the ontology graph to form the current SFG.

Focus+Context Visualization. We implement a focus+context

lens using a one-dimensional fisheye view [17] to stretch different

regions vertically when users mouse over nodes in the history
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view. Usually, the height of the tree along the horizontal direction

is not expected to be large, otherwise the nodes could be trivial

with too many split operations. Therefore, visual clutter is most

likely to happen around the leaves overlapping each other verti-

cally. If the minimum distance between any two leaves is smaller

than the node size, we will enable the lens and enlarge the focal

region centered at the y-coordinate of the mouse position.

Interactions. Selecting or splitting a leaf in the history view

has the same effect as that operation in the graph view. Selecting

an internal node will select all the leaves of the subtree rooted

at that node. This provides an efficient way to select a group of

nodes in many scenarios. In addition, users can specify a set of

nodes to be hidden in the graph view. The hidden nodes will be

shown in gray in the history view. This simplifies the graph so that

users can focus on the relationships of interest. The hidden nodes

can be displayed again in the graph view at any time. Another

important feature of the history view is that the split operations

can be reverted by merging all descendants back to a single node.

The order to merge previously split nodes is flexible, i.e., users

do not need to follow exactly the reverse order of split operations

to cancel each of them. Finally, users may split an internal node

using other criteria as well. The effect is the same as first merging

back to that internal node and then splitting it again.

4.3 Volume View

The volume view displays streamlines, critical points, and spatial

regions in 3D. They are drawn as tubes, spheres, and wireframe

boxes, respectively. If only objects in one node are selected for a

node type, the objects are colored according to the type. Specif-

ically, for streamlines, the color on a point along a streamline

indicates the velocity magnitude at this point (see Figure 5 (d));

for critical points, we use the same orange color as that of P-

nodes in the graph view; and for regions, their colors indicate the

corresponding velocity entropies. If objects in multiple nodes are

selected, we assign different colors to objects of different nodes,

so that they can be distinguished.

In addition, users can select any streamline, critical point,

or spatial region in 3D, and link it back to the graph view and

history view. Since the objects displayed in the volume view are

already selected in the other two views, this allows users to further

filter the previous selection or inspection results. The selection

is performed at the node level, similar to the graph view. To

start the selection in the volume view, users can click on “select

streamlines”, “select critical points”, or “select regions” from the

pop-up menu. When nodes of one type is selected, objects in

the other two types of nodes will be deemphasized, so that users

can focus on the selected objects, and still receive the contextual

information of objects in other types. For example, when users

select critical points, the radius of streamline tubes will shrink,

and the line width for region wireframes will decrease. Users can

select a node by click on any of its object in the volume view.

Multiple nodes can be selected before clicking “finish selection”.

The objects in the selected nodes will remain in the volume view,

with other objects removed.

5 RESULTS

In this section, we present five case studies with SFG followed

by a comparison of the features/tasks supported by the SFG and

previous approaches. The case studies are: finding the connections

among critical points (Case Studies 1 and 2), discovering the

relationships between flow fields and associated scalar volumes

(Case Study 3), discovering the relationships between streamlines,

critical points, and vortex cores (Case Study 4), and revealing the

evolution of flow and features (Case Study 5). For all the case

studies, we produce 3000 field lines and use two voxels as the

distance threshold to determine whether a critical point and a field

line is connected. The grid resolution is determined by the cell

size. We use a cell size of 5×5×5 for most of the data sets, except

the five critical points data set (10×10×10) and the combustion

data set (20×20×20).

5.1 Case Studies

Case Study 1: Five Critical Points. We explore the five critical

points data set and demonstrate the results in Figure 1. This

data set is simulated by randomly placing five critical points in

the domain, including two spirals, two saddles, and one source.

Starting from the ontology graph, we split the R-node using the

“entropy” attribute, the L-node using the “entropy” attribute, and

the P-node using the “type” attribute, respectively. These split

operations are recorded and demonstrated in (a), and the SFG

produced by applying these operations is shown in (b). From

the labels of P-nodes in (b), we find that ten critical points are

detected instead of five. This implies that additional critical points

are generated during the simulation. The connections among these

critical points are revealed by connector inspection with all the

P-nodes selected. From the percentage bars in (b), we can see

that the different types of critical points are mostly connected

through high-entropy streamlines and regions. This is expected,

since streamlines associated with the critical points normally

present more complex flow patterns. The original 3D streamlines

and regions connecting the critical points are shown in (c), which

provides us the details on how the critical points are connected

and helps to confirm that the information revealed by the SFG is

accurate and reliable.

Case Study 2: Two Swirls. Our exploration of the two swirls

data set is shown in Figure 5. The two swirls data set contains two

major swirling patterns together with several smaller ones on the

side, as shown in (d). The current SFG is shown in (b) and the

corresponding node split history is shown in (a). Starting from the

ontology graph, we first split the P-node using the “type” attribute.

Then, structure-based split is performed with all P-nodes selected.

The L-node and R-node in the ontology graph are split based on

their connections to the P-nodes, so that objects in each new L-

node and R-node correspond to the same types of critical points.

We select all P-nodes and perform neighborhood inspection.

The inspection result is shown without and with the egocentric

layout in (b) and (c), respectively. Note that the same set of

nodes (all P-nodes) is used for both structure-based split and

neighborhood inspection. Therefore, all circular percentage bars

are full, since if a node connects to a P-node, all its objects

should connect to some object in the P-node. In addition, this

indicates that connectors of P-nodes can be directly observed at

the node level, and streamlines connecting to different sets of P-

nodes can be distinguished by their colors in the volume view.

The relationships between streamlines and critical points, and

between spatial regions and critical points can be clearly observed

in (b). Most streamlines and regions are not related to the critical

points, and they form the two largest nodes at the center. In most

cases, an L-node or R-node connects to a single P-node. Only

four of the L-nodes serve as connectors between the P-nodes, as

indicated by the arrows in (b). We find that the P-nodes form two

groups through the L-nodes. The largest P-node with ten attractive
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Fig. 5: Exploration of the two swirls data set. (a) The node split history. (b) Neighborhood inspection for all P-nodes without the

egocentric layout. Each P-node represents a type of critical points. (c) The same inspection result of (b) with the egocentric layout. (d)

300 streamlines randomly selected from the entire pool of 3000 streamlines. The velocity magnitude is mapped to streamline colors.

(e) and (f) The objects in the red and blue dashed boundaries of (b), respectively. (g) The connectors of the P-nodes.

spiral saddles connects to four other types of critical points (i.e.,

repelling saddles, repelling spiral saddles, attractive saddles, and

attractive spirals) through L-nodes. These five P-nodes and their

neighbors are marked by the blue dashed boundary in (b). The

streamlines related to these four P-nodes are shown in (f). Since

the L-nodes are generated by structure-based split, the color of

a streamline actually indicates which types of critical points they

are related to. The streamlines in the four L-node connectors are

shown in (g). The two L-nodes connecting the attractive spirals,

repelling spiral saddles, and attractive spiral saddles have the label

“high curvature”, since these three P-nodes exhibit spiral patterns

leading to high-curvature streamlines. The other type of P-node

(i.e., repelling spirals) is isolated, as no connector can be found

between this P-node and other nodes. The streamlines related to

this P-node are shown in (e). Compared to a randomly selected

subset of 300 streamlines in (d), the streamlines in (e) and (f)

reveal more inner structure of the flow field. We can only see the

two larger swirling patterns and some smaller ones in (d), but their

connections, and the small spirals inside the two large swirls can

hardly be found.

In terms of observing the overall pattern of connections among

nodes, the standard layout in (b) seems to be more effective than

the egocentric layout in (c). Although the egocentric layout shows

clearly the 1- and 2-hop neighborhoods, the two groups of critical

points are still difficult to observe. However, finding the node pairs

is relatively easy with the egocentric layout, as users can simply

scan through the 1-hop neighborhood to see which nodes have two

edges connecting to them.

Case Study 3: Atmosphere. The atmosphere data set contains

121 time steps. Each time step consists of one vector field indicat-

ing the wind directions and two associated scalar fields of PM10

and cloud fraction (CLDFRA). We first investigate a single time

step (59) in the middle. Figure 6 shows the exploration of this time

step. We split the R-node in the ontology graph using “PM10”,

since its distribution is of particular interest. We further split the

R-node with “high PM10” and each of the eight disjoint regions

becomes one R-node, as shown in (a) and (b). The resulting SFG

shows a strong relationship between PM10 and cloud fraction,

since every R-node labeled “high PM10” has “low CLDFRA”. In

addition, we find that the critical points are less relevant to “high

PM10” regions, since only one of the eight “high PM10” R-nodes

connects to the P-node. To investigate into the regions that may be

affected by these “high PM10” regions, we perform neighborhood

inspection on “high PM10” R-nodes. In (c), we can see that the

streamlines passing these regions cover mostly the lower part

of the volume which is close to the ground. This indicates that

the PM10 pollution is more likely to propagate onto the ground

by the wind. We further examine the connections among these

“high PM10” regions by performing connector inspection on the

corresponding R-nodes. In (d), the streamlines following a ‘C’-

shape at the lower-right part pass through several “high PM10”

regions. This indicates that the other regions passed by these
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Fig. 6: Exploration of the atmosphere data set at time step 59.

(a) Current SFG with connectors of high PM10 regions. (b)

High PM10 regions in the volume view. (c) and (d) Resulting

streamlines of neighborhood inspection and connector inspection

on high PM10 regions.

streamlines may be under greater influence of the PM10 pollution,

since they are affected by different “high PM10” regions.

Case Study 4: Supercurrent. Figure 7 shows the exploration

of the supercurrent data set, which is from a time-dependent

Ginzburg-Landau (TDGL) superconductor simulation. The simu-

lation has two outputs: the vector-valued supercurrent field and

complex-valued scalar order parameter field. The supercurrent

field characterizes the electric current in the material; the order

parameter field is used to derive magnetic flux vortices, or simply

vortices, which are 3D curves and are the most important features

in the data [5]. Because of the Lorentz force from the magnetic

flux, supercurrents swirl over the vortices.

We create C-nodes, a new type of feature nodes for the vortex

cores, as shown by the red pentagons in (a). The rationale is

based on the swirling supercurrent over the vortices. The edges

between C-nodes and other types of nodes are defined as follows:

an L-C edge is formed between a streamline and a vortex core if

the distance between the closest points on them is smaller than

a threshold; a P-C edge is formed between a critical point and

a vortex core if the distance between the critical point and the

closest point on the vortex core is smaller than a threshold; and an

R-C edge is formed between a spatial region and a vortex core if

the vortex core passes the region.

In this data set, the vortex cores are mostly evenly spaced in the

domain, as shown in (b). We apply structure-based split with the

C-node in the ontology graph selected to distinguish the objects

that are related to the vortex cores and those that are not. The

interactions between the vortex cores and the related streamlines

and critical points are particularly interesting. Therefore, we hide

the other nodes, split the C-node into nodes containing individual

vortex cores, and split the P-node related to the vortex cores

according to their types. The resulting SFG is shown in (a).

We demonstrate the streamlines that are related to vortex cores

(c), related to critical points and vortex cores (d), and connecting

multiple vortex cores (e), respectively. In (c), using neighborhood

inspection, the streamlines related to the vortex cores confirm that

supercurrents swirl over the vortices. Most of the streamlines swirl

over individual vortices, but some of them swirl over multiple vor-

tices. Besides, vortices are mainly related to saddles, as revealed

by the SFG in (a). Saddles are formed, because supercurrents

move in opposite directions between neighboring vortices. The

relationships between vortices and critical points can also be

observed by inspecting the neighbors of the critical points, as

shown in (d). In (d), streamlines that are not related to the critical

points are removed, thus the figure provides a clear visualization

of the relationships between critical points and vortices. In (e),

we inspect the connectors between the C-nodes to identify the

streamlines related to multiple vortex cores. None of the connector

streamlines is related to the vortex cores at the centers. Instead,

most of the streamlines connect the cores on the two sides. Our

tool enables further discovery of the complex relationship between

vortices and streamlines based on the interactive exploration.

Case Study 5: Combustion. The combustion data set has

nine time steps and four associated scalar fields: namely, pressure

(P), density (RHO), reaction progress (PROG), and temperature

(Temp). The propagation of a premixed flame into an unburned

fuel/air mixture in a homogeneous isotropic turbulent flow was

simulated [7]. Each spatial region is now associated with a “time

step” attribute. A region is connected to a pathline if the pathline

passes that spatial region at the corresponding time step. To under-

stand the temporal behaviors of this data set, we also include the

finite-time Lyapunov exponents (FTLE) as an additional attribute

of the spatiotemporal regions. The FTLE field at a specific time

step is computed by tracing particles from that time step for a

time span. Since this data set has only nine time steps, we trace

the particles until the last time step. To investigate the evolution of

critical points, we introduce the feature flow lines as a new type of

nodes. The feature flow lines are traced in the feature flow fields

[27] to indicate the movement of critical points over time.

We first explore the first time step. We split the P-node and R-

node using “time step” and hide the nodes at the other time steps.

Since the critical points are related to “low PROG” regions, we

split the R-node at the first time step using “PROG” and perform

neighborhood inspection with the P-node selected. The inspection

result is shown in Figure 8 (a). Note that the feature flow lines are

hidden as well for clearer observation. We can see that most of

the critical points reside in the blue regions (“low PROG”). In the

combustion data set, “PROG” is the normalized temperature and

the “low PROG” regions in Figure 8 (a) correspond to an unburned

fuel/air mixture with low temperature. The critical points in this

data set are associated with complex turbulence structures that

are injected at a boundary. Such turbulence structures disappear

as they pass through the flames with high temperature (“high

PROG”). The result shown in Figure 8 (a) is consistent with such

a phenomenon.

To understand the temporal development of flows, we merge

the R-nodes with different “PROG” and split the resulting R-node

using “FTLE”. In Figure 8 (c) and (d), we perform neighborhood

inspection with “high FTLE” and “low FTLE” R-nodes selected,

respectively. We find that most of the “high FTLE” regions locate

at the boundaries, and their related pathlines are usually more
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Fig. 7: Exploration of the supercurrent data set. (a) Current SFG to inspect the relationships between the vortex cores, critical points,

and streamlines. (b) The vortex cores in the volume view. (c) The vortex cores and the related streamlines and critical points. (d) The

critical points and the related streamlines and vortex cores. (e) The vortex cores and their connectors.

(a) (b)

(c) (d)

Fig. 8: Exploration of all the time steps of the combustion data set.

(a) The critical points at the first time steps and their neighboring

objects. (b) All critical points and the feature flow lines connecting

them. (c) and (d) High and low FTLE regions and their respective

neighboring objects.

diverse at the beginning stage. In contrast, the pathlines related

to the “low FTLE” regions are more similar. We then investigate

the evolution of critical points. We show the P-nodes at other time

steps again, hide the L-nodes and R-nodes, and perform connector

inspection. The feature flow line segments that connect critical

points at different time steps are shown in Figure 8 (b). There are

1778 critical points in total and each time step contains 148 to 227

critical points. However, only 187 feature flow lines are detected

as connectors and most of them are too short to be noticed in the

volume view. This indicates the short existence of critical points

in the combustion data set, which is caused by a stochastic nature

of the turbulent flow field. Most of the critical points at a time step

are born as new ones instead of corresponding to critical points at

previous time steps.

5.2 Comparison to Previous Approaches

We compare our SFG framework with previous approaches based

on their ability to handle the following tasks:

• T1. Discovery of flow patterns: identifying the common

flow patterns or flows with certain characteristics, and

locating patterns of interest.

• T2. Region analysis: understanding how the spatial re-

gions are connected by flows.

• T3. Exploration of flow features: specifying flow features

for display and revealing their interactions.

• T4. Analysis of associated scalar fields: revealing the

relationships between the flow field and associated scalar

fields.

• T5. Support for unsteady flow fields: revealing the

evolution of flows and features in unsteady flow fields.

We compare our approach against four previous approaches:

namely, FlowString [25], [26] (FS), flow web [35] (FW), Flow-

Graph [11], [12] (FG), and saddle connectors [28] (SC). Table 2

shows a summary of this comparison. For the discovery of flow

patterns (T1), FS fully supports this task by extracting and visual-

izing the basic patterns for user query. Both FW and FG preserve

the flow patterns to some degree in the graph layout, but they may

require trial-and-error efforts to identify the exact patterns. SC

depicts the flow patterns related to critical points, but other patterns

may be missing. Our SFG partially supports this task. Although

it allows users to identify flow patterns indirectly through other

elements (e.g., critical points) or field line characteristics (e.g.,

entropy), no visual hint of the patterns is provided by the graph

itself. For the region analysis (T2), FS and SC do not explicitly

encode the regions to support this task. Among these five methods,

FW and FG are the best in terms of describing the connections

among regions with respect to flows. But these two approaches

organize regions in a fixed hierarchy. In contrast, our SFG supports

dynamic grouping of regions according to various criteria, but their

spatial relationships are less perceivable in the layout. Therefore,

we consider this task to be partially supported by FW, FG, and our
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SFG. For the exploration of flow features (T3), FW and FG do not

support this task since the features are not explicitly captured. FS

can capture the features that are related to the shape of individual

streamlines (e.g., swirls), but it is not capable of capturing other

features. SC provides precise descriptions to the critical points and

their relationships, but it does not support other types of features

or allow users to specify critical points of interest for observation.

Our SFG fully supports this task. It provides great extensibility

to support the exploration of various types of features by creating

multiple types of nodes. The relationships among the features and

other objects can be discovered using the operations provided

by SFG. For the analysis of associated scalar fields (T4) and

support for unsteady flow fields (T5), our SFG is the only one that

supports both tasks. Similar to our approach, FG handles unsteady

flow fields by partitioning the entire spatiotemporal domain into

4D blocks. But SFG can be flexibly extended to incorporate

established tools (e.g., FTLE and feature flow fields) to study

the temporal development of unsteady flow fields, which is not

supported by FG.

Overall, we find that the major merit of SFG is its flexibility,

thanks to the semantic nature of the graph. By assigning additional

attributes and creating extra types of nodes, SFG can be extended

to incorporate new features or analysis tools. Meanwhile, the

operations allow the connections among these fundamental objects

to be discovered, which is critical to support various kinds of tasks.

6 EXPERT REVIEW

To evaluate the effectiveness of our approach, we collaborated

with Dr. Seung Hyun Kim and conducted an expert evaluation.

Dr. Kim is an expert in computational fluid dynamics with more

than 20 years of experience. His research interests include tur-

bulent combustion modeling and simulation. Several tasks were

designed to guide him through the exploration procedure, in-

cluding identifying streamlines or regions with certain properties,

discovering relationships between the identified streamlines and

regions, locating certain types of critical points, and distinguishing

streamlines connecting different types of critical points, etc. Dr.

Kim was informed that the comments behind the rating were more

important than the accuracy of performing the tasks.

The evaluation was performed in three stages, each of which

took around two hours. At the first stage, Dr. Kim was introduced

to the tool, including the meaning of the semantic graph and

the interactions to perform the tasks. He interacted with the tool

and asked questions to ensure that his understanding was correct.

The second stage was performed five days later, which gave him

enough time to digest the content. At the second stage, he was

asked to follow our task list using the five critical points data set,

and to freely explore the two swirls and atmosphere data sets.

At the third stage, he was introduced the exploration of unsteady

flow fields, and freely explore the combustion data set. Instead

of measuring the timing and accuracy of performing these tasks,

we designed a set of open questions that ask him to comment on

different aspects of our approach, which serves as a guideline for

him to organize his comments. After performing these tasks, Dr.

Kim provided the following comments in written format.

“In terms of SFG operations, attribute-based split is intuitive

and easy to use. It facilitates the exploration by categorizing

different regions and flow structures. In addition to the attributes

currently available in the program, other quantities such as strain

rates and dissipation rates could be added. It is also helpful if a

user can define an attribute based on primitive variables in the flow

T1 T2 T3 T4 T5

FlowString [26] ++ - + - -
flow web [35] + + - - -
FlowGraph [11], [12] + + - - +
saddle connectors [28] + - + - -
SFG + + ++ ++ ++

TABLE 2: Tasks supported by previous approaches and our SFG.

“++”, “+”, and “-” indicate that a task is fully supported, partially

supported, and not supported by a method, respectively.

field data. Structure-based split, on the other hand, is somewhat

complex to understand and use. It would be more logical to select

two categories of nodes separately, i.e., a set of nodes to be split

and the other set of nodes for which structural equivalence is

inspected. The expert also felt that neighborhood inspection and

connector inspection are complementary to each other. Together

they offer an effective way of investigating the relationship among

different flow structures and regions. For instance, neighborhood

inspection and connector inspection are effective in identifying

flow structures around regions with low or high values of scalars

or particular flow characteristics, e.g., high entropy. The use of

three views, namely, graph, history, and volume views, is effective

in navigating the data and managing the operations. The learning

curve seems a little steep especially for those who are only familiar

with traditional visualization techniques, but this approach can be

beneficial once its functions are fully appreciated.”

“SFG appears to be a particularly attractive approach for

investigating the relationship between scalar transport and fluid

flow. For instance, when studying pollutant dispersion, it would be

interesting to find vulnerable regions with high levels of pollutant

concentration and identify ways to reduce pollutant levels in those

regions. The pollutant concentration field is determined by the

flow field, and linking the high pollutant concentration regions

with particular flow structures will be of primary importance to

devise the mitigation strategy. In drug delivery, the concentration

of drug should be high at targeted locations. In some drug delivery

applications, SFG can be used to study the relationship of scalar

transport with flow in complex structures in a human body. SFG is

effective in understanding the evolution of features as well. In the

study of turbulent mixing and combustion, often useful is a tool

that tracks a certain feature, e.g., high scalar dissipation layers.

During the evaluation using the unsteady combustion data set,

the feature flow lines for the critical points were explored, which

revealed that the critical points are short-lived. An extension of

this feature to investigating scalar structures and their relationship

with flow fields will be of interest.”

“An advantage of SFG appears to be its flexibility in extending

functionality. While three kinds of objects are currently used, it

appears that the addition of new kinds of objects is straightforward

and helpful in some applications. Similar to critical points, other

pointwise features based on scalar quantities, for instance, local

extrema, can be useful. In addition, it will be helpful for a user

to select values used for attribute-based split. While automatic

selection of values is convenient and should be kept, the flexibility

in setting values for attributes may improve the clarity of the

graph. For instance, the log-scale is more appropriate than the

linear scale for some quantities, especially when derivatives of

flow or scalar variables are involved in the evaluation. Similarly,

it will also be beneficial to allow finer resolution of regions.

Currently, the regions are generated by uniform division of the

computational domain for the volume data. Once a user has
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identified a particular region of interest, it may be necessary to

refine such a region for more thorough investigation or enhanced

clarity in the graph representation.”

In addition, Dr. Kim gave the following comments to the

user interface of SFG. “Structure-based split often generates com-

plicated graphs especially when the current graph configuration

already contains a number of nodes. It may be helpful to provide

an option so that users can select the objects (nodes) that will be

split, as discussed above. It may also be helpful to add the one-

click “undo” function to easily recover a previous configuration.

For colors used in the SFG visualization, with three kinds of

objects, the current practice looks appropriate. As an alternative,

it may be good to use the mixed colors of the nodes (objects),

gradually changing from one color to the other along an edge.

This will be particularly useful when more kinds of objects are

used. Finally, the speed of animated transition in the graph view

seems appropriate for keeping the mental map of the graphs.”

7 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach that applies the concept of

semantic graph to investigate the relationships among different

types of objects in a flow field. We introduce semantic flow

graph (SFG) that captures the connections among field lines,

features, and spatiotemporal regions as a heterogeneous graph, and

leverage semantic abstraction to simplify and explore this graph.

We develop a suite of operations (attribute-based split, structure-

based split, neighborhood inspection, and connector inspection) to

explore the graph. In addition, a history view is designed to inform

users how the current SFG is generated starting from the ontology

graph, and to enable users to make convenient and swift transitions

between any two configurations of SFG. Through brushing and

linking, the volume view displays the graph exploration results in

the original 3D space for making connections and observations.

In the future, we would like to investigate the following. First,

we will extend our current split guidance to visual recommenda-

tion with a complete graph exploration. Split guidance provides

navigation cues on splitting a node based on a certain attribute.

However, this solution only “looks” one step ahead, and may not

lead to a globally optimal solution. An ideal recommendation for

exploration should balance between added information and visual

complexity, and generate the most informative graph with multiple

steps of exploration. This may potentially lead to an automatic

solution for SFG generation by simply applying the recommended

operations. Second, we will study automatic comparison of two

SFG configurations. For example, users may split the L-node in

the ontology graph using different attributes to generate different

SFGs. However, they have to manually compare the two graphs

or the corresponding streamline visualizations to examine the

differences. Automatic comparison of two SFGs will be beneficial

for users to discover the differences between streamline clusters

and to figure out how their relationships to the regions and critical

points differ from each other. Third, attribute-based split uses a

set of predefined attributes and evenly partitions their ranges to

group the nodes. As pointed out by the domain expert, allowing

users to define their own attributes and pick the values to partition

the ranges will be beneficial. These can be implemented by

introducing arithmetic and derivative operators that generate new

attributes from flow fields and providing an interface that displays

the distribution of an attribute for users to manually divide its

range. It will also be helpful to design automatic scheme for

partitioning attribute ranges. In addition, when an R-node is split

based on a scalar attribute, we may partition its corresponding

region based on the isosurfaces instead of regular blocks. This will

better preserve small or thin structures in the scalar field. Fourth,

our current implementation only consider low-order critical points.

To explore the relationship among more complex flow features,

we will seek more advanced solutions for high-order critical point

detection or more general definition of flow features [31].
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