
© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

FlowNL: Asking the Flow Data in Natural Languages

Jieying Huang, Yang Xi, Junnan Hu, and Jun Tao, Member, IEEE

a

b

c

d

e

f

Fig. 1. The interface of FLowNL. (a) shows the query input box. (b) shows the dialog box to resolve unknown terms. (c) shows the
query formula of a derived object. (d) shows primitive objects and their respective derived objects. The displayed object are indicated
by small squares. (e) shows the suggested queries below the input box. (f) shows the streamlet visualization corresponding to three
objects “tiny spiral flow”, “spiral flow”, and “upward flow”.

Abstract— Flow visualization is essentially a tool to answer domain experts’ questions about flow fields using rendered images. Static
flow visualization approaches require domain experts to raise their questions to visualization experts, who develop specific techniques
to extract and visualize the flow structures of interest. Interactive visualization approaches allow domain experts to ask the system
directly through the visual analytic interface, which provides flexibility to support various tasks. However, in practice, the visual analytic
interface may require extra learning effort, which often discourages domain experts and limits its usage in real-world scenarios. In this
paper, we propose FlowNL, a novel interactive system with a natural language interface. FlowNL allows users to manipulate the flow
visualization system using plain English, which greatly reduces the learning effort. We develop a natural language parser to interpret
user intention and translate textual input into a declarative language. We design the declarative language as an intermediate layer
between the natural language and the programming language specifically for flow visualization. The declarative language provides
selection and composition rules to derive relatively complicated flow structures from primitive objects that encode various kinds of
information about scalar fields, flow patterns, regions of interest, connectivities, etc. We demonstrate the effectiveness of FlowNL using
multiple usage scenarios and an empirical evaluation.

Index Terms—Flow visualization, natural language interface, interactive exploration, declarative grammar.

1 INTRODUCTION

Flow visualization has been a central topic in scientific visualization
for decades. The key to a successful flow visualization is to convey
the information regarding flow structures of interest in the desired way.
However, the definitions of “structures of interest” and the “desired
way” often vary across domains, applications, or even experts’ pref-

Jieying Huang, Yang Xi, and Junnan Hu are with the School of Computer
Science and Engineering, Sun Yat-sen University. E-mail:
{huangjy85,yangxi3,hujn3}@mail2.sysu.edu.cn.
Jun Tao is with the School of Computer Science and Engineering, Sun
Yat-sen University, National Supercomputer Center in Guangzhou, and
Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai). Email: taoj23@mail.sysu.edu.cn. He is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

erence. The early approaches often place or select streamlines using
fixed application-agnostic criteria, such as evenly-spacing between
streamlines [18] and maximal information conveyed [56]. Other ap-
proaches target fixed types of features, such as saddles [49], critical
points [35, 58], vortices [38]. These approaches are usually developed
based on visualization experts’ understanding of data or based on the
communication between domain experts and visualization experts to
determine what is desired. However, the approaches using fixed criteria
may not meet the need of specific domains and applications, while the
approaches targeting fixed types of features may not extend to other
types of features or require significant development effort to do so.

The exploratory techniques emerge to customize the visualization
for different features or applications. These approaches allow users
to specify the streamlines related to the features of interest through
graph-based interface [14,37,46], pattern query [51], predicates [20,39],
and tangible interface [17]. Among these approaches, the graphical
interface is most commonly used. However, although flexible, powerful
graphical interfaces often require steep learning curves and signifi-
cant comprehension effort. The tangible interface provides physical

1

feedback for experts to interact with their data in a more intuitive man-
ner. But due to the limited degree-of-freedom in the tangible interface
interaction, it could be difficult to support sophisticated queries.

Inspired by recent advancements in natural language interface (NLI)
for visualizing and exploring tabular data [27, 31, 44, 59], we propose
FlowNL, a natural language interface for flow visualization, aiming to
support various types of analysis tasks and reduce the learning and us-
age effort at the same time. FlowNL features a flexible scheme to query
flow structures and explore the structures and their connections through
a dialogue mechanism. Specifically, it supports the derivation of flow
structures from the basic types of objects, named primitives. The primi-
tive objects include the vector field, sampled streamlines, associated
scalar fields, and other unstructured data points (e.g., critical points and
geographic regions). FlowNL provides a series of simple operations to
filter and combine the simple objects to derive more complicated ones.
For example, the atmospherical phenomenon “typhoon” can be derived
by combining “spirals” from filtering streamlines, “strong wind” from
filtering the scalar field of velocity magnitude, and “in the west Pacific
Ocean” from filtering the geographic locations. To derive new objects
in natural interactions, FlowNL provides a dialogue mechanism. This
allows users to define flow structures during a conversation, instead
of defining all structures before a query. The defined flow structures
are then visualized by an efficient streamlet visualization engine in
an animated manner. Additionally, FlowNL supports the analysis of
connections among the flow structures using a set of neighborhood
operations. These operations extend the existing objects along the flow,
which provides a Lagrangian view of the flow field.

Architecture. FlowNL is realized through three major components:
a natural language parser, a declarative language for flow visualiza-
tion, and a visualization engine. The natural language parser takes the
natural language queries as input and translates the queries into speci-
fications in the declarative language. The declarative language serves
as an intermediate layer between the natural language and the flow
visualization engine. It specifies how the objects should be combined
to derive a new one, and how the objects should be visualized. The
visualization engine performs the actual computation to derive objects
and use them to guide the placement and removal of particles.

Contribution. Our contribution can be summarized as follows:

• We propose FlowNL, a natural language interface that translates
the natural language queries to flow visualization results. Using
the natural languages as queries is intuitive and greatly reduces
the learning and usage effort.

• We design a declarative language that flexibly filters and combine
the primitive objects (e.g., fields, streamlines, and features) to
define structures of interest. The declarative language also spec-
ifies the connections among structure allowing the Lagrangian
behaviors to be observed.

• We design an interface integrating the dialog box for natural
language queries and the flow visualization. It also allows users
to view and adjust the visualization styles of objects.

2 RELATED WORK

Interactive flow visualization. Interactive techniques assist the visual
exploration of flow data and customization of visualization results,
providing the flexibility to handle different tasks. Several techniques
are built on the graph representation to select streamlines or other flow
structures, such as the flow web [57], streamline embedding [37], Flow-
Graph [28], semantic flow graph [46], and FlowNet [14]. While most
of these approaches [14, 28, 37, 57] use distance metric to guide the
generation of graph layout, semantic flow graph [46] uses the semantic
information to group the elements of similar attributes for exploration.
Streamline predicate [20, 39], IGScript [26], and tangible interface [17]
also adopt a similar idea but assign the semantic information in dif-
ferent ways. Another commonly adopted strategy for interactive flow
exploration is based on pattern matching or feature detection. These ap-
proaches often rely on the similarity measure of streamlines [47,51] and
pattern matching for flow field regions [6] to identify similar patterns.

More involved techniques are developed for specific applications and
features, such as atmospheric front [19], PV banner [2], vortex [12, 13],
and splat [33, 34].

Natural language interface. The natural language interface ap-
peared in the information visualization field for around a decade. Most
of the NLI approaches follow the same scheme: parsing the natural
language queries, translating them into an intermediate form, such as
explicit commands [45], SQL queries [9], VisFlow functions [59], and
declarative specifications [32], and using the intermediate commands
for visualization. Luo et al. [27] followed a similar scheme, but de-
veloped a transformer-based model for the translation. Several NLI
systems feature interactive dialog between users and the systems, such
as Articulate 2 [21], Eviza [42], and Evizeon [16]. DataTone [10]
targets ambiguity in natural language. It resolves the ambiguity using
algorithmic disambiguation coupled with interactive ambiguity wid-
gets. Orko [44] supports multiple modalities of interaction including
NLI. It uses a combination of grammar-based and lexicon-based pars-
ing techniques to interpret the queries. The above work all support
natural language query data for visualization. Cui et al. [8] proposed
Text-to-Viz, which generated visualization results from multiple sets
of collected visual elements instead of query results. Researchers also
evaluated the NLI approaches to produce guidelines for future devel-
opments. Srinivasan et al. [43] designed several tasks to examine and
compare five NLI systems, aiming to contrast them to reveal the chal-
lenges in designing NLIs. Tory et al. [50] designed an empirical study
for their system, suggested approaches to interpret and respond to users’
intent, and reveal how varying levels of system understanding might
affect the user experience.

Declarative language for visualization. The use of declarative
language in information visualization toolkits became popular in the
last decade, such as D3 [3], Reactive Vega [41], Vega-Lite [40], gg-
plot2 [52], and GoTree [22]. Recently, the declarative language is
also used to provide computational simplicity and build visual analytic
systems. For example, Li and Ma [23] proposed P4, which generated
WebGL programs in runtime to enable high-performance data process-
ing and visualization. The authors later proposed P5 [24] that extended
the data transformation and visualization capabilities for progressive
analysis and visualization, and P6 [25] that used declarative language
to combine interactive visualizations and machine learning.

The declarative languages also received attention from the scientific
visualization community. Shih et al. [53] presented a declarative gram-
mar for customizing volume visualization pipelines. Their grammar
focuses on the needs of specification of DVR-based volume visual-
ization. Wu et al. [54] designed DIVA, a declarative language for in
situ data analysis and visualization, which made adaptive workflow
development a simpler process. Liu et al. [26] proposed IGScript, a
declarative language for interactive scientific data presentations. This
is different from the previous works which often target the computation
or rendering stages. Similar approaches use the boolean formula to
specify transfer function for features in volume [5] and domain-specific
language for volume processing [7, 36].

Comparison with the existing works. In terms of how the flow
structure is represented, the semantic-based interactive approaches,
such as semantic flow graph [46], streamline predicate [39], and
IGScript [26] is most similar to our FlowNL. Our declarative spec-
ification can be considered as creating semantic labels by filtering and
composing existing labels (predicates). However, our approach also
extends these approaches in the granularity of specification. These
approaches select flow structures at the streamline level. Therefore,
they have limited power in finding structures that are only related to
streamline segments (e.g., flow in high pollution regions). Addition-
ally, FlowNL integrates the filtering and linking across multiple spaces,
while the other approaches may need additional steps for this purpose.
Finally, FlowNL provides a convenient interaction scheme using natural
language, which is not available in previous approaches.

In terms of natural language interface, FlowNL shares similar frame-
work with previous techniques: translating natural language into an
intermediate language that customizes the visualization. But unlike the
existing techniques, FlowNL targets a significantly different domain

2

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

intersect filter: spiral

filter: west pacific

intersect

derived objects

filter: humidity

spiral flow
flow intersect

humid flow

humid region

visualization results structured gridunstructured

data set system-generated user-defined operations

vector field: (u, v, w) scalar fields:

temperature, cloud, …
flow (streamlines):

position, latent, …

geographic regions:

center, radius

critical points:

position, type

flow pattern

(latent regions):

center, radius

…

primitive

objects

queries

(natural language)

typhoon

declarative specification (json)
parse

visualization

engine

Fig. 2. An example of FlowNL workflow that translates the natural language queries into flow visualization results. The queries are parsed to form the
declarative specification. The declarative specification specifies how to derive objects for visualization () from the existing primitive objects in the
data set () and automatically generated data (). The operations used to derive the objects are shown in the green boxes ().

with both structured and unstructured data. Therefore, although the
framework is similar, the problem formulation, the declarative language
design, and the visualization engine of FlowNL are still unique.

Similar to existing declarative languages, FlowNL customizes visual-
ization using dictionary-like specifications. But unlike other technique,
FlowNL supports operations that are designed specifically for describ-
ing structures in flow fields. For example, using the left and right
neighboring operations to extend a scalar feature along the flow.

3 DESIGN REQUIREMENTS

Target users and tasks. FlowNL aims at providing flexible interac-
tions to explore flow field. It should allow users to conveniently specify
structures of interest and observe their related flows. Toward this goal,
it targets the common exploratory tasks for domain experts:

T1. Filtering. The experts want to identify structures in scalar
attributes, features, spatial regions, and latent regions. For example,
what are the flow in high temperature regions (i.e., heat transmission),
and where are the spiral flows (e.g., vortices)?

T2. Compound queries. The experts want to specify structures
fulfilling multiple criteria. For example, where are the upward flows
with high humidity (i.e., evaporation), and where are the strong spiral
flows (i.e., hurricane)?

T3. Transportation and connection discovery. The experts want
to know how a structure evolves along the flow and how different
structures are connected by the flow. For example, where the flow in
high pollution regions goes to (i.e., pollution diffusion), and is there
any pathway from the spirals to the sinks?

Targeting these tasks, FlowNL is design as a lightweight tool to uti-
lize the information in data, but it may not extract complex features that
requires sophisticated computation. Its primary target users are domain
experts. They can use FlowNL to examine simulated data, observe
extracted features, and verify scientific hypotheses with visualization.
They can also generate animated visualization easily, which helps to
communicate their research work with others. FlowNL may be useful
in science popularization as well. Tutors can produce visualization
to explain scientific phenomenons and the audience can interact to
discover more. Guided by the analysis of tasks and users, we identify
the design requirements as:

R1. Easy-to-use. The tool should support users with limited vi-
sualization background. Specifically, the users should be able to use
natural language queries to identify the flow fulfilling specific criteria
and create customized flow visualization easily.

R2. Predictable behavior. The tool should deliver trustable visual-
ization results, in the sense that users can expect how the system will

respond to their queries. This requires the rules to understand queries
and determine the system’s behavior to be easily explainable.

R3. Lagrangian view of flow. The tool should support the queries
of Lagrangian flow behavior. For example, it should allow users to
query where the flow in a region comes from and where it goes to.

R4. Application-agnostic. The tool should be able to support the
common types of flow data (e.g., flow fields and their associated scalar
fields), and detected features, regardless of the specific application.

4 OUR APPROACH

Our FlowNL system is designed to translate natural language queries
into flow visualization results. The queries specify what are the flow
structure to visualize and how each structure should be visualized.
Due to the difficulty to build direction connections between natural
languages and flow visualizations, we first consider how to describe
flow structures in a general way. Toward this end, we designed a
declarative language that filters and combines the basic types of flow
data (named primitive objects) to derive the other more complicated
objects (i.e., flow structures). In this way, our goal becomes translating
natural language queries into declarative specifications and rendering
the flow structures according to the specifications.

Framework. Figure 2 illustrates an example of FlowNL workflow
that translates the natural language queries into animated flow visual-
ization. The translation first parses the queries to form the declarative
specifications. The declarative specifications leverage the pre-existing
knowledge from either the data set () or the data automatically gen-
erated by our system (). The pre-existing knowledge is shown on
the top. The declarative specifications specify the operations () to
filter and combine the existing objects to derive the new ones (). For
example, the spiral pattern is generated as a filter of the primitive ob-
ject “flow pattern” (vectors in deep latent space), and the spiral flow
is produced by intersecting the spiral pattern and all the streamlines.
Then, an object “typhoon” is generated by taking the intersection of
the spiral flow and a geographic region “west Pacific Ocean”. The
declarative specification also decides which objects will be sent to the
visualization engine. In this section, we will formally describe the
objects, the declarative language, and the natural language processing.

4.1 Objects and Attributes
The objects abstract various kinds of data and flow structures, in ac-
cordance with design requirement R4. FlowNL considers two types of
objects: primitive objects and derived objects. The primitive objects
are basic ingredients that cannot be built from other objects, including
all information provided by the data set or the system, and basic objects

3

defined by users (e.g., geographic regions). The derived objects are
generated from primitive objects or other derived objects to describe the
flow structures. In this section, we describe the concept of the objects
and attributes. Please refer to Section 3 for an example of specification.

Primitive objects and attributes. Two types of primitive objects
are considered in our current design: structured grids and unstructured
points. The primitive objects of structured grids host the flow field
and scalar fields as attributes. Fields of different resolutions can be
considered as attributes of different grid objects. In this paper, we
consider all fields to share the same resolution for simplicity. In this
case, a single primitive object “grid” is created to include all the fields.
Other flow objects usually consist of unstructured points, such as critical
points, sample points on streamlines, and spatial regions. Each object
consists of a set of points carrying various attributes. For example, all
critical points can form an object, and each point may have its own
position, type, and scale. With this definition, a specific type of critical
point (e.g., sinks) can be a derived object from filtering the primitive
object “critical points” by type.

The primitive objects encode the essential elements and their at-
tributes in the data. Our system can support attributes of any dimen-
sions, such as 1D scalar values, 2D and 3D positions, and even high-
dimensional latent vectors from deep representation approaches. The
primitive objects and their attributes are configurable using a meta file
in JSON format. The dashed frames in Figure 2 show a typical example
of primitive objects in a data set, which involves five types of data. The
first type is the field data from the data set, as shown in the blue boxes.
This includes a flow field and multiple scalar fields. The second type
is the sampled streamlines generated by the system. The streamlines
provide a Lagrangian view of the flow field, which is necessary to
understand the flow behavior. To ensure the coverage of the field, an
information-theoretic framework [56] is used to guide the sampling.
Our system will also produce several attributes for filtering desired
flow features. Currently, for each sample point, we record the position
of that point and generate a latent vector to describe the flow pattern.
The latent vector is produced by a deep autoencoder on the distance
matrix among sample points. Users can use latent vectors from other
representation approaches, as our system supports high dimensional
attributes. FlowNL does not produce further attributes (e.g., vorticity)
and rely on users to provide them as scalar fields if needed.

The other three types of data can all be considered as spheres in
different spaces: the critical points are spheres in the 3D physical space,
the flow patterns are spheres in the latent space, and the geographic
regions are circles in the 2D geographic space. Note that we use the
spheres to approximate regions in different spaces because this strategy
can easily extend to arbitrary dimensions. For example, in our current
implementation, the flow patterns are spheres in 128-dimensions. For an
irregular region, multiple spheres can be used to approximate a single
object. However, in the scenarios where high precision is required,
users may adopt other approaches to approximate the regions (e.g.,
mask volumes).

Derived objects. The derived objects are generated from the prim-
itive objects or other existing derived objects. FlowNL provides two
schemes to derive objects. The first scheme is filtering existing objects.
For example, an object of the saddle points can be created by filtering
the critical points by their types, and an object corresponding to regions
of high humidity can be created by filtering the grid points based on
the humidity scalar field. The second type of object is generated by
combining existing objects using a suite of operations provided by our
system. For example, the hurricane is the intersection of the spiral flow
and the geographic region “Gulf of Mexico”. We will elaborate the
derivation operations in the next subsection.

4.2 Declarative Language for Flow Visualization
The declarative language specifies visualization parameters for existing
objects and operations to generate new objects. For object derivation,
our system represents all objects as subsets of elements of the respective
primitive objects and apply the following operations to derive new ones:
filtering, mapping, union, intersection, difference, and neighboring. In
this section, we will elaborate on the goals and rules of the operations,

{

 "task": "create object", "name": “high humidity",

 "primitive": "grid", "attribute": "r",

 "operation": ">", "value": "90%"

}

//filter the scalar field r

//and select the grid points

//with top 10% of r values

{

 "task": "create object", "name": "with high humidity",

 "operands": ["flow", “high humidity"],

 "operation": "intersect"

}

//generete a derived object

//with the streamline points

//in high humidity region

{

 "task": "create object", "name": "from high humidity",

 "operands": ["with high humidity"],

 "operation": "right neighbor"

}

//generate a derived object

//by extending the flow with

//high humidity along the flow direction

{

 "task": "visualize", "name": "from high humidity",

 "color": "drak red"

}

//visualize the derived object

// with flow "from high humidity"

Fig. 3. Sample declarative specifications generated by the query “show
the flow from high humidity region”. The four declarative specification
corresponds to the tasks to filter the grid by humidity, identify the stream-
line segments in the high humidity region, extend the segments along
the flow direction, and visualize the segments.

but only briefly introduce the syntax with examples, as the users are
supposed to interact with the system using natural language instead of
the declarative language.

Filtering. The filtering selects a subset of elements from an object
to form a new one based on an attribute. Note that the attribute can
be 1D or high-dimensional. The high-dimensional filter is represented
by a series of spheres. Each sphere is encoded by its center (i.e., high-
dimensional vector) and a radius.

Mapping. The mapping converts a derived object from one primitive
to another using a specified attribute. For example, streamlines can
be mapped to the nearest grid points based on their positions. In this
way, a derived object from the primitive “flow” can be converted into
an object of the primitive “grid”.

Union, intersection, and difference. These operations apply re-
spective set operations to combine the elements of two objects. When
both the two objects are derived from the same primitive objects, the
operations are performed directly on the indices of elements.

Operations between different primitive objects. When the two
objects are derived from different primitive objects (for example, humid
regions and spiral streamlines), a mapping will be performed to map the
elements in the second operand to the elements in the first operand. For
example, the statement “humid regions containing spiral streamlines”
will map the spiral streamline segments into grid points and compute
the intersection on grid points; while “spiral streamlines in humid
regions” will map the grid points with high humidity to streamlines and
perform the intersection on streamline points. In short, the resulting
object shares the same primitive object as the first operand. Therefore,
the first statement produces a region while the second one produces a
series of streamline segments.

Neighboring. The neighboring operation extends the spatial cov-
erage of an object to provide more contextual information. For grid
points, the neighboring operation includes the neighboring grid points
of the current ones, which is similar to the dilation in image processing.
For spatial regions, the neighboring operation simply increases the ra-
dius of each circular region. For streamline segments, the neighboring
operation expands the segments along the streamlines.

In accordance with design requirement R3, FlowNL facilitates the
understanding of the flow field from the Lagrangian perspective. We fur-
ther introduce the right neighboring and left neighboring to expand the
segments along the flow direction and the opposite, respectively. These
operations are particularly useful for tracking the origin-destination
relationships in flow fields. Note that the objects that are not derived
from streamlines do not support the these two operations. In this case,
the system will automatically map the objects to streamlines, apply the
operation, and map the object back to its original primitive.

Query formula. The query formula is designed to specify com-
pound operations to simplify declarative specifications. It also serves
as a brief description of a derived object and a convenient interface for

4

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

users to formally define an object. The operations supported by the
query formula are: union (|), intersection (&), difference (−), neigh-
boring (N(·)), left neighboring (L(·)), and right neighboring (R(·)). We
do not support filtering in the query formula for simplicity, as filtering
is more convenient using our filtering widgets. For example, the query
“show the flow from high humidity region” in Figure 3 can be written
as “R([f low]&[highhumidity])” in the query formula.

Visualization. The flow-related objects (i.e., derived from stream-
lines) are used as seeding candidates to generate particles with a small
noise applied. To avoid a particle diverging from the original object, the
flow direction at the particle is compared to the direction on the original
streamline. When the difference between the direction is too large, the
particle will be directly recycled. A declarative specification can also
specify the color and the density of particles related to an object. It can
specify a scalar field for color mapping as well. The other objects are
visualized as point clouds. In this way, the statement “show the flow of
high humidity” will create particles in the high humidity regions, while
“show the region of high humidity” will create a point cloud covering
the high humidity regions.

4.3 Natural Language Processing

The declarative language may still be difficult to use for domain experts
without programming experience. To further enhance the usability,
the FlowNL architecture is built with a natural language interface
(NLI) to translate natural language queries from users to declarative
language. The NLI consists of: a grammar parser that identifies the
tasks, objects, and their relationships from the natural language; a
derivation mechanism that generates derived concepts from existing
ones; and additional features such as ambiguity resolving and auto-
completion. Note that we choose semantic parser for it is easier to
explain and manipulate, in response to design requirement R2.

Grammar parser. The parser of FlowNL translates a user query
into declarative specifications, including tasks, objects, object relations,
and visualization styles. Specifically, FlowNL uses a context-free
grammar to parse the queries and form a parser tree. Since a query
in natural language is likely to specify multiple tasks at the same
time, the parser tree usually contains multiple layers, where each node
corresponds to a declarative specification. The fundamental grammar
rules of FlowNL are as follows:

Rule 1 : 〈Query〉 −→ 〈TaskType〉〈Object〉〈Style〉
Rule 2 : 〈Object〉 −→ 〈Object〉〈ObjectRelations〉
Rule 3 : 〈Object〉 −→ 〈Object〉〈Object〉〈ObjectRelations〉
Rule 4 : 〈Object〉 −→ 〈Attribute〉〈Object〉〈Operator〉〈Value〉

An example of the parsing procedure. Figure 4 shows an example
of the parsing procedure for the query “Draw the spiral flow from
Pacific with velocity magnitude over 32 in dark blue”. The word “draw”
identifies the query to be a “visualize” task using Rule 1, although
the 〈Object〉 and 〈Style〉 are not identified yet. The phrase “spiral flow
from Pacific” matches Rule 3 and produces the specification (a). The
phrase “velocity magnitude over 32” matches Rule 4 and produces the
specification (b). With the objects corresponding to the specification (a)
and (b), the third object can be created with the specification (c) using
Rule 3. Given the third object, the parser can determine the 〈Object〉 of
the entire query and apply Rule 1 to generate the specification (d). In
this example, the 〈Object〉 of the entire query is recursively identified
from the primitive objects and their attributes. This procedure allows
intermediate objects to be derived during the query. It distinguishes
our FlowNL from most of the existing NLI approaches for tabular data,
where entities are usually predefined by the columns of tables.

Object relations. 〈ObjectRelations〉 specifies how the objects relate
to each other, which is used to generate the operations in the declar-
ative specifications. Other than the set operations such as 〈Union〉,
〈Intersection〉, and 〈Difference〉, 〈ObjectRelations〉 further introduces
the following spatial relations: 〈From〉, 〈To〉, 〈FromTo〉, 〈Between〉,
〈In〉, 〈Near〉, and 〈RelatedTo〉.

The spatial relations in 〈ObjectRelations〉 enable the analysis of
Lagrangian flow behaviors. These relations extend the objects along
the flow using the neighboring operations. The definitions of 〈From〉,
〈To〉, 〈FromTo〉, and 〈Between〉 are relatively straightforward, and 〈In〉,
〈Near〉, and 〈RelatedTo〉 specify neighboring regions of growing sizes.
〈In〉 specifies the flow inside the object, 〈Near〉 specifies a small neigh-
borhood of the object by extending the object along the flow, while
〈RelatedTo〉 specifies the entire region containing the streamlines pass-
ing through the object. Formally, let O be an object, 〈From〉 indi-
cates R(O), 〈To〉 indicates L(O), 〈FromTo〉 indicates R(Oa)∩ L(Ob),
〈Between〉 indicates (R(Oa)∩L(Ob))∪(L(Oa)∩R(Ob)), 〈In〉 indicates
O, 〈Near〉 indicates N(O), and 〈RelatedTo〉 indicates N+(O), where
“+” denotes an extended neighborhood.

Task identification. FlowNL uses keyword classification for task
recognition. The parser will first match the words in a query sentence
with the keywords in a dictionary, which lists potential keywords of our
tasks. For example, “show” and “draw” will be classified as a query of
the “visualize” task. If none of the keywords is matched, the synonyms
corresponding to these keywords will be retrieved automatically based
on word similarity. In our implementation, the similarity between
words is calculated by the Wu-Palmer similarity function [55]. This
similarity function returns a similarity score based on the depth of the
two words in WordNet classification [30] and the depth of their least
common substrate (LCS) of the most specific ancestor node.

Note that the task of some verbs may rely on the content of the
sentence. For example, “set” and “change” may mean to adjust the
color of an object (e.g., “change the color of A to red”), corresponding
to the color task. In other case, they may mean to adjust the threshold of
a filter (i.e., “set the wind speed of hurricane over 40”), corresponding
to the adjust task. For this kind of ambiguous keywords, the system
will further search the entire sentences for the actual task.

Object identification. An object in a natural query may be the
name of an attribute, a primitive object, an existing derived object, and
even the name of an object to be derived. We use the part-of-speech
tagging (POS) tagging to recognize unknown objects and N-grams
to check the existing objects, which is similar to the previous NLI
approaches [42, 44, 59]. But unlike these approaches, we do not allow
approximiate matching as scientific concepts and terms often carry
exact meanings. For example, “typhoon” and “hurricane” shares a
large similarity value (larger than 0.9) using the Wu-Palmer similarity
function [55], but they may refer to difference concepts for researchers
in atmospheric science. Therefore, instead of auto-correction, we rely
on users to provide the exact terms for query.

To reduce the user effort, we allow users to provide aliases for the
objects. These aliases will be used in the N-gram matching in addition
to the object names. Users do not need to define an alias before using it.
Instead, they can provide the definition in a dialog using our derivation
mechanism, which will be explained in the following paragraph.

Derivation mechanism. We introduce a derivation mechanism to
resolve the undefined objects or alias. The undefined terms are identi-
fied as unrecognized noun phrase by tracking the POS tagging produced
and the dependency tree using the Stanford CoreNLP toolkit [29] and
SpaCy [15]. Figure 5 illustrates an example of derivation. When a user
ask the system to show an unknown object “hurricane”, the system
will ask the user for the definition. The user may then explain that
“hurricanes are spirals with wind speed larger than 32 meters per second
near Gulf of Mexico”. Upon receiving this explanation, the parser
will parse the sentence, generate the declarative specification, and send
the specification to the visualization engine to derive the new object
“hurricane”. With the object created, the natural language parser will
recursively process the original query “show hurricane” and request the
visualization engine to visualize the hurricane.

We rely on users to provide the definitions of unrecognized objects
based on the existing ones, instead of querying knowledge bases such as
WolframAlpha [1] and WordNet’s synsets [30] to obtain the definition
automatically. This avoids the ambiguity of scientific concepts, which
could be domain-specific. For example, the wind speed to characterize
a hurricane may vary across different research areas. Indeed, the Saffir-
Simpson hurricane scale categorize hurricanes into five types based

5

Object Object Attribute Style

Object

Relation ValueTask

Draw

VB

the

DT

spiral flow from Pacific with velocity magnitude over 32 in dark blue

JJ NN IN NNP IN NN NN IN CD IN JJ NN

Operator

<Attribute><Object><Operator><Value><Object><Object><ObjectRelation>

<Object><Object><ObjectRelation>

<TaskType> <Style>

Relation

<Object>

Grammar

POS

Object
Identification

a b

c

d

Fig. 4. An example of parsing procedure. From top to bottom, this figure shows the natural language query, the part-of-speech (POS) tag, the object
identification, and the parsing tree using grammar rules. The rules labeled by the numbers are used to produce the declarative specifications.

Natural Language ParserInterface

User: Show hurricane.

User: (gets feedback)
Hurricane is the spiral flow with

wind speed larger than 32 meters

per second near Gulf of Mexico.

User: (gets visualization)

Parser: Derivation mechanism asks

information of unknown object.

Parser: Request of creating derive

object named hurricane with declarative

language in JSON.

Parser: Gets definition of “hurricane”.

Parser: Request of visualization with

declarative language in JSON.

Engine!"Create derive object

from primitive objects.

Engine!"Create visualization.

Visualization Engine

Fig. 5. An example derivation workflow to define “hurricane”.

on the wind speed. Additionally, the term “hurricane” may even be
used to describe general large swirling storms without specifying the
geographic location.

Resolving ambiguity. Two types of ambiguity may appear in natu-
ral language queries: semantic ambiguity and quantitative ambiguity.
The semantic ambiguity occurs when objects or their attributes share
the same names. For example, the term “spiral” may refer to a type
of critical points, or a flow pattern, leading to semantic ambiguity. In
this case, FlowNL will make a best guess based on a least recently
used (LRU) strategy, assuming that an object will not be specified in
multiple consecutive queries. But we should note that FlowNL does
not completely rely on this strategy to determine the object referred by
an ambiguous term. Instead, FlowNL will expose the ambiguity of the
phrase, present all potential objects to users, and allow them to correct
the default choice of object, as shown in Figure 6(c).

The quantitative ambiguity refers to the vagueness of describing
quantities in natural languages. For example, in the phrase “the flow
with low velocity magnitude”, the word “low” implies a filter should
be applied but it does not specify the exact threshold for filtering. In
this case, FlowNL will use a default threshold (e.g., “high” indicates
“top 5%”) and bring up an interactive widget to resolve the ambiguity.
For scalar value, a histogram of the corresponding attribute will be
displayed for selecting a value range, as shown in Figure 6 (a). For 2D
vectors (e.g., geographic regions), a 2D plot will be displayed for users
to specify circular regions, as shown in Figure 6 (b). Specifying regions
in higher dimensional space (e.g., latent spaces) will be difficult, which
is not supported in our current system. A potential solution is to use
dimension reduction techniques to embed the targeted space into 2D
space for selection.

Auto-completion. Auto-completion reduces users’ effort to type in
their queries, and also provides hints to users about the tasks and queries
supported by the system. FlowNL implement this mechanism through
fuzzy matching and prefix matching. We design a suite of template

(a) (b) (c)

Fig. 6. Resolving ambiguity in FlowNL. (a) shows the widget to specify
the value range of “low velocity magnitude” . (b) shows the widget to
specify the region of “Indian Ocean”. (c) shows a box to specify the
primitive for an attribute named “type”.

sentences to remind the users of the typical queries supported by our
system. Before users enter any information, the input box will show the
template queries in a default order, as shown in Figure 1 (e). Once users
start typing, the system will keep updating the edit distances from the
templates to the user input. The edit distance measures the minimum
number of operations to convert the current input to the template queries,
which reflects user’s intention. We use the edit distance for selecting
the candidate templates to display as suggestions.

4.4 Interface
The interface of FlowNL consists of: query input box, dialog box,
object and attribute table, and flow visualization, as shown in Figure 1.

The query input box is shown on the top of the interface. It takes
the natural language queries from users and sends the queries to the
back-end natural language parser. During typing, it will keep tracking
the key words including the objects, attributes, and colors. It will also
match the partially completed queries with templates and display the
top matching templates as suggestions, as shown in Figure 1 (e). The
dialog box is used to define unknown terms during conversation, as
shown in Figure 1 (b). If the definition contains further unknown terms,
the dialog will be expanded to define the newly appearing terms.

The flow visualization shows the flow-related objects as streamlets
and the other objects as point-clouds, as shown in Figure 1 (f). It also
displays the interactive widgets to edit filters for 1D/2D attributes. The
flow visualization is rendered on the back-end visualization engine, and
sent to the front-end web interface as a video stream.

The object and attribute table shows the derived objects and attributes
associated with each primitive object. The primitive objects are shown
as the table headers in bold font. When the derived objects tab is active,
each cell shows a derived object, as shown in Figure 1 (d). If an object
is visualized, a small glyph will appear to its left. The glyph contains
a color legend at the center and a circular slider at the outer ring. The
color legend indicates the color of the object or the color map used for
that object. The slider can be used to adjust the “weight” of the object.
For a flow-related object, the weight indicates the density of particles
assigned to the object. For an object of point-clouds, the weight is
used as the opacity of the points. By clicking the object name, its

6

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

background from small z to high QN high QN
from high QN to large z

from high QN to low QN high QN from high QN to low QN with large w
high QN

(a) (b) (c) (d)

from low NC to high NC
from high NC to low NC high QN from low NC to high NC high QN high QNhigh QN not from large w color by NC

(e) (f) (g) (h)

Fig. 7. The key visualization results from a domain expert’s exploration using the BOMEX data. The blue streamlets correspond to the background
flow, which are uniformly spawned in the entire domain. The variables “QN”, “NC”, “z”, and “w” denote “non-precipitating condensate”, ”could water
number concentration”, “height”, and “vertical velocity”, respectively.

corresponding query formula will be displayed, as shown in Figure 1
(c). Users may edit the query formula to change its definition. If the
object is a 1D or 2D filter, a selection widget will be displayed for users
to edit the filter parameters. In Figure 1, a filter object “high w” is
clicked and the histogram of the attribute “w” is displayed at the bottom
left corner of the flow visualization. Users may brush the histogram to
determine the value range of “high w”.

5 EVALUATION

We evaluate FlowNL empirically with a domain expert in cloud physics
and a tutor in science popularization. Please refer to the supplementary
video for the exploration of two case studies. We also conduct a formal
user study to examine the learnability and usability.

5.1 Case Study by Domain Expert: BOMEX data set
We team up with an expert from Brookhaven National Laboratory
to examine the effectiveness of FlowNL. The expert is a research
scientist with more than 10 years of experience in cloud physics study.
His research interest is ice nucleation, remote sensing, aerosol-cloud
interactions, and cloud simulation. The expert provided the BOMEX
data and used FlowNL to explore this data. The BOMEX data simulates
the atmospheric shallow cumulus convection in a domain of 3175×
3175×3980 meters. This data set includes one flow field and fourteen
scalar fields. The data contains a large cloud, and the expert would like
to visualize the formation of this cloud by tracking the cloud droplet
activation and evaporation. In this session, we present his exploration
and reproduce the key visualization results, as shown in Figure 7.

The expert first examined the overall flow pattern with the randomly
sampled particles, as shown in Figure 7 (a). In the upper layer, the flow
is mostly laminar and moves at a fast speed. In the lower layer close to
the ground, the flow becomes more turbulent and the flow directions
are more diverse. In the middle layer, where the cloud resides, the flow
pattern is more complicated and the streamlets are shorter as the flow
moves slower in this region. Therefore, the randomly spawned particles
are less effective in forming a continuous pattern to describe the flow
behavior in this region.

To better observe the flow pattern in the cloud regions, the ex-
pert queried “show the flow of high QN”, where “QN” is the “non-
precipitating condensate” including water and ice. He explained that
“high QN” can be considered as the core of the cloud. The “flow of
high QN” is visualized in orange in Figure 7 (b). To further examine
the interaction between the cloud and the layers of flows close to it,

the expert queried “show the flow from high QN to large z” (in green)
and “show the flow from small z to high QN” (in red), where “z” is the
height. He explained that the red flow and the green flow revealed how
the vapor entered and escaped from the cloud core, respectively.

However, the interactions between layers of flow may not reveal the
complete paths of vapors. Therefore, the expert hid the red and green
flow and added the purple flow using a query “show the flow from high
QN to low QN”, as shown in Figure 7 (c). He commented that this
showed a clearer pattern of the vapor transportation path. The particles
move either toward the east (from the left to the right in the screen)
or the southeast (from the left to the bottom right in the screen). The
expert explained that this indicated that the cloud was shearing.

Next, the expert wanted to quantify the numbers of particles moving
upward and downward, respectively. But this is not supported in our
current implementation. Therefore, he decided to separate the upward
flows, as this was usually less common. He removed the purple flow to
reduce occlusion and added the upward flow by querying “show the flow
from high QN to low QN with positive w”, where “w” is the vertical
velocity. The corresponding flow was shown in light green in Figure 7
(d). The upward flow leaving the cloud core mostly move eastward.
This indicates that cloud dilution, arising from the mixing between the
cloud entity and the environmental air, occurs in the downwind region
due to the wind shear.

Then the expert used the attribute “cloud water number concentra-
tion” (NC) to guide the exploration. He explained that NC was a better
indicator of the boundary of the cloud, as this attribute is stable inside
the cloud and mostly zero outside the cloud. In contrast, QN change
smoothly from the boundary to the core of the cloud. The expert used a
yellow point cloud to indicate the spatial coverage of the core of cloud
by querying “show the grid of high QN in light yellow”. This avoided
the distraction from the orange streamlets. He then added the inward
and outward flows by querying “show the flow from low NC to high
NC” (light purple) and “show the flow from high NC to low NC” (gray),
as shown in Figure 7 (e). He commented that the flows generated using
NC better demonstrated the interactions near the cloud boundary.

The expert was particularly interested in the light purple flow (from
low NC to high NC), as this flow supported the cloud. Therefore, he
removed the gray flow for better observation of the light purple one,
as shown in Figure 7 (f). Most of the light purple flow resides at the
bottom of the core of cloud, supporting the base of the cloud. But the
expert also found two branches of flow entering the cloud on the top,
as highlighted by the red arrows. This may indicate the cloud droplet

7

(a) (b)

Fig. 8. Flow visualization results using additional data sets. (a) shows
the result using ECMWF data set. (b) shows the result using five critical
points data set.

formation at cloud edge due to entrainment and mixing. The expert was
curious about whether there was any other entry point from non-upward
flow. He queried “show the flow from low NC to high NC that is not
from large w”. The query result is visualized by the red streamlets in
Figure 7 (g), which reveals all entry points from the non-upward flow.

Finally, the expert examined the evaporation process based on NC.
He brought back the orange and purple flows in Figure 7 (c) and queried
“color the flows by NC”, as shown in Figure 7 (h). The flow shows
a clear boundary between the red and blue regions, indicating the
boundary of the cloud. The expert found that a vortex appeared at the
subsiding shell, as highlighted by the dashed orange circle. He com-
mented that this vortex clearly showed the entrainment (environmental
air flows into the cloud entity) and detrainment (part of cloud entity
flows into the nearby environment) processes.

Overall, the expert was satisfied with the exploration using FlowNL.
He commented that “FlowNL is a powerful tool to visualize the instan-
taneous 3D fluid motion. It helps to illustrate complex processes in a
turbulence environment (e.g., atmospheric clouds), which can benefit
education and research.” He also stated that “I will recommend FlowNL
to my colleagues and I will be interested in using the future versions.
Particularly, it will be even more helpful if it can support quantification
of the particles with different criteria and plot the statistics in nice
visualization charts.”

5.2 Additional Case Studies
European Centre for Medium-Range Weather Forecasts
(ECMWF) data set. A tutor in science popularization used FlowNL
to generate an animation for scientific storytelling. She aimed at
explaining the vapor transportation to China. A key visualization frame
is shown in Figure 8 (a). She first queried “show the hurricane” and
explained to the system that hurricane is “spiral flow”. She showed
the typhoon as the hurricane in west Pacific in green. She colored the
hurricanes that were not typhoon in red. She then identified two vapor
transportation paths from the Mediterranean Sea to China and from the
Indian Ocean to China. She was satisfied with the video produced.

Five critical points. We used FlowNL to visualize this data set,
as shown in Figure 8 (b). We first showed the saddles, sources, and
spirals in yellow, red, and green, respectively. Then we showed the
flow related to the saddles, the flow from the sources, and the flow from
the spirals in the respective colors as the critical points. Note that there
are several spiral saddles in this data set. We queried “show the flow
related to the saddles but not from the spirals” to avoid overlaps.

5.3 User Study
We conduct a formal user study to evaluate the effectiveness, usability,
and learnability of our FlowNL. Through this study, we wanted to
evaluate how much learning effort it costs for a user to manipulate the
tool, whether a user can form correct queries for given tasks, whether a
user is confident in the meaning of the resulting visualization, and how
well FlowNL responds to the user queries.

Participants and experiment setup. We recruited eight unpaid par-
ticipants with either computer science or scientific domain background.

Two participants have PhD degrees, four have master degrees, and the
other two have bachelor degrees. In terms of academic background,
five participants have mechanical engineering, physics, or atmosphere
research experience, three participants have research or working expe-
rience in interactive techniques (including one with atmosphere back-
ground), and the other participant’s research area is database. Four
participants reported experience with geographic information systems,
ParaView, or similar tools, but none of them have experience with
interactive flow visualization system or natural language interface. The
participants interacted with the system on a 32-inch 4K screen where
FlowNL interface occupied an area of 2600×1400 pixels.

Procedure. The participants started with a demonstration video
and a brief introduction (approximately 15-20 minutes). The introduc-
tion included the natural language query, query formula, interface of
FlowNL, and basic knowledge about the ECMWF data set, which was
used in this study. After the introduction, they could freely experi-
ment with FlowNL to explore the ECMWF data set. They could ask
questions regarding the usage of any functions of FlowNL or the data
set. They were informed to take as long as they want until they feel
comfortable to perform the tasks. Each of the participants was required
to perform 12 tasks using the ECMWF data on a different date. Their
interactions were recorded as a video by a screen capture software.
They were informed that the timing would not be used to measure their
performance, and they were encouraged to experiment different queries
for the same task. Finally, the participants were required to answer
the ten questions in SUS questionnaire [4] and provide additional com-
ments. Please refer to the supplemental materials for the introduction
and questionnaire documents.

Tasks. The twelve tasks covered different types of queries, including
creating derived objects, verifying query formula, hiding an object,
adjusting the density of particles for an object, extending an existing
object along the flow, adjusting the value range of a filter, and changing
the color of objects. Five tasks were related to the object creation,
including objects related to attributes, geographic regions, flow patterns,
and compound relations.

P1 P2 P3 P4 P5 P6 P7 P8 avg.
time (min) 42 41 32 29 23 19 27 17 28.8

first 11 9 11 16 12 12 12 14 12.1
total 39 55 39 40 32 18 22 40 35.6

accepted 33 51 30 38 31 18 19 39 32.4
QF 4 0 5 0 4 2 5 1 2.6

Table 1. The task performance. # first shows the numbers of queries
to finish the tasks for the first time, # total shows the total numbers of
queries performed, # accepted shows the numbers of accepted queries,
QF shows the numbers of query formula used.

Task performance. All the participants performed all tasks suc-
cessfully, although using different number of queries. As most of
the participants were willing to experiment with alternative queries
to explore more, we report both the number of queries for them to
complete the tasks for the first time, and the total number of queries
they performed. Table 1 summarizes the task performance.

In terms of the first time completion, the participants used 12.1
queries to perform the eight tasks requiring at least one query. We did
not count the other four tasks as they could be performed with mouse
operations instead of queries. For the eight tasks being counted, the
possible minimum number of queries is 9, as one of the task requires
at least two queries to perform. One participant (P2) used exactly 9
queries to finish the tasks and five participants used 12 queries or less
to finish. P4 used 16 queries to finish the tasks, which was the most
among all participants. By checking the recorded video, we found that
P4 used 6 queries for Task 5, which asked the participants to create a
flow-related object fulfilling three criteria. P4 used multiple queries to
create additional objects, leading to extra number of queries.

The exploration time and the total number of queries varied across
participants. The participants took 28.8 minutes to perform the tasks on
average, ranging from 17 to 42 minutes. On average, they performed
35.6 queries with 32.4 queries accepted, leading to an acceptance rate of

8

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

Q10Q8Q7Q6Q5Q4Q3Q2Q1 Q9

5

Score

4

3

2

1

4

1

1 1 1

1

1 1 1 1

4
4

Q10Q8Q7Q6Q5Q4Q3Q2Q1 Q9

5

Score

4

3

1

2

2

6 5

1

3

1

3 4 4 3 2
1

4

1

5 4 3 4 5 6

Fig. 9. Participant responses for the ten SUS questions. The higher
scores are placed closer to the bottom.

90.9%. Most of the participants performed much more queries than the
minimum required to finish the tasks. We found that the acceptance rate
might not correlate with the exploration time. The three participants
who spent the least amount of time (17, 18, and 23 minutes) actually
had high acceptance rate (39/40, 18/18, and 31/32, respectively). Please
refer to Section 1 in Appendix for the details of rejected cases.

Most of the participants were willing to experiment with the query
formula. Four participants used the query formula to create or edit
an object for more than four times, even if the query formula was not
necessary to perform the tasks. Only two participants did not use the
query formula at all during the exploration. To our surprise, the five
participants with scientific domain background were not reluctant to
try the query formula. All of them used the query formula for at least
once, including one used it for five times and two used it for four times.

SUS Scores. We evaluated the learnability and usability of FlowNL
using the System Usability Scale (SUS) [4]. FlowNL received an over-
all score of 76.6 out of 100, placing it between “good” and “excellent”
in SUS rating. Figure 9 shows the detailed survey results. Note that,
since SUS alternates the tone of each item, we reverse the scores for
negatively phrased items back to positive scores before the analysis.

Three questions are regarding the learnability: Q4 (“I need technical
support to use this system”), Q7 (“I think most people can learn this
system quickly”) and Q10 (“I think there are a lot of things to learn
before I can start using this system”). While Q4 received the lowest
score (3.0) among all the questions, both Q7 (4.4) and Q10 (4.0) re-
ceived relatively high scores of 4.4 and 4.0, respectively. It seemed
that most participants believed that one could learn FlowNL in fairly
short amount of time without much background, but they felt that the
technical support was necessary during the learning stage.

The other questions are related to the usability. All questions except
Q2 received scores of 4 or above, indicating the participants agreed
that the system functioned smoothly without much irregularities. Q2
(“I find this system to be more complicated than it should be”) received
the lowest score of 3.75. One participant explained that it was com-
mon to analyze planar flows in atmospherical research, where static
visualization was adequate.

User behaviors. We have two main observations in the user study.
First, mouse versus natural language queries. The participants still
preferred mouse operations for some tasks. For example, we found that
only three participants used the natural language for Task 7 (adjust the
density of particles) and 8 (hide a specific object). Two participants
mentioned that they would use natural language if voice queries were
supported. By analyzing the recorded interactions, we also found that
the participants were accustomed to mouse operations. For example,
one participant moved the mouse to an object after executing the natural
language query to hide that object. We believe this is also related to the
use of desktop in our experiment. In an immersive environment, the
participants may lean to the natural language queries.

Second, ambiguity in natural language. For example, four par-
ticipants expected that “the flow passing through China and Japan”
indicated an intersection between the flow through China and the flow
through Japan, while the other four participants corresponded this query
to the flow through China or through Japan. We also found that this
might relate to the underlying geographic locations, as most of the
participants believed that “the flow passing through China and Mexico”
indicated a union. Under the design requirement R2, we always use the
intersection for “and” and union for “or”. We explained this rule to the
participants so that the behavior of FlowNL can be predictable.

5.4 Limitations
Unsteady flow fields. The current evaluation only examines the effec-
tiveness of FlowNL using steady vector fields and streamlines. This
may be acceptable when the change of flow is much slower than the
movement of particles. However, for general applications, unsteady
flows and pathlines must be studied to understand the Lagrangian be-
havior. This is not fully supported in the current version of FlowNL.
Our data engine can naturally incorporate pathlines as a primitive with
4D points, and the set and neighboring operations can apply to the
pathline objects. However, the visualization engine needs further de-
velopment to filter objects by time during animation, and the natural
language parser needs an extension to support the navigation of time.
Furthermore, the scale of unsteady fields may require more powerful
devices or more advanced algorithms to manipulate objects in real-time.

Complex features. We should note that FlowNL cannot derive com-
plex features directly from the raw flow fields. For example, vortex
extraction [13] may be computed by reference frame optimization [12],
from trajectories [48], from surfaces [11], etc. These computations,
while accurate, are application-specific, and they cannot be performed
with FlowNL. Under design requirement R4, FlowNL provides a gen-
eral data interface for users to provide their features.

Meanwhile, FlowNL can incorporate deep representations as at-
tributes, which is useful with the emerging deep learning-based tech-
niques in scientific visualization. Currently, FlowNL uses latent encod-
ing as an attribute of streamlines to describe their shapes. We manually
select typical encoding from the embedding space as flow patterns. For
example, “spiral” corresponds to the streamline segments of a circular
shape. Compared to the specifically designed algorithms, our encoding
is less accurate and only reveals patterns of individual streamlines. But
it serves as an immediately available tool for rough explorations.

Visualization and interaction techniques. FlowNL visualizes vari-
ous kinds of objects in two forms: streamlet animation and point clouds.
However, this may not reveal complex structures concisely. More
involved techniques, such as integral surfaces, should be considered.
Additionally, the scalar features may be rendered more precisely using
direct volume rendering or isosurface rendering as well. The natural
language parser and declarative grammar should be extended to specify
visualization styles and parameters. In terms of interaction, FlowNL
uses textual input, which limits its usage. Voice may be more applicable
in immersive environments and enhances multimodal interactions, as
voice interaction is hands-free.

Evaluation. FlowNL is evaluated by two experts through empirical
evaluation, and five participants with domain backgrounds in the user
study. Deploying the system to a public platform may better evaluate
its performance in different applications and scenarios. For now, we
provide an analysis about the supported users and tasks in Section 3.

6 CONCLUSIONS AND FUTURE WORK

We propose FlowNL, a natural language interface for exploratory flow
visualization. FlowNL integrates a natural language parser, a declara-
tive language designed for flow visualization, and a flow visualization
engine. It supports queries of flow structures related to various kinds
of scalar and flow features. We evaluate FlowNL using multiple case
studies with domain experts and a user study.

While our current implementation emphasizes predictable responses
for queries, we would like to explore more sophisticated approaches
in understanding the fuzzy natural language queries. For example, by
deploying FlowNL on supercomputers, we may collect more queries
from a broader spectrum of users to train deep translators. Knowledge
graphs may be used to derive unknown concepts as well. We would also
like to support unsteady flows, more involved visualization techniques,
and multimodal interactions, as discussed in Section 5.4.

ACKNOWLEDGMENTS

This research was supported in part by the National Natural Science
Foundation of China through grants 61902446, 62172456, 91937302,
National Key R&D Program of China through grant 2021YFB0300103,
and National Windtunnel Project. The authors would like to thank
Dr. Fan Yang for his insightful suggestions and case study.

9

REFERENCES

[1] WolframAlpha. https://www.wolframalpha.com/.
[2] R. Bader, M. Sprenger, N. Ban, S. Rüdisühli, C. Schär, and T. Günther.

Extraction and visual analysis of potential vorticity banners around the alps.
IEEE Transactions on Visualization and Computer Graphics, 26(1):259–
269, 2019.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[4] J. Brooke. SUS: A quick and dirty usability scale. Usability Evaluation in
Industry, 189(3), 1996.

[5] S. Bruckner and M. Groller. VolumeShop: An interactive system for direct
volume illustration. In Proceedings of IEEE Visualization Conference,
pages 671–678, 2005.

[6] R. Bujack, J. Kasten, I. Hotz, G. Scheuermann, and E. Hitzer. Moment
invariants for 3D flow fields via normalization. In Proceedings of IEEE
Pacific Visualization Symposium, pages 9–16, 2015.

[7] H. Choi, W. Choi, T. M. Quan, D. G. C. Hildebrand, H. Pfister, and W.-K.
Jeong. Vivaldi: A domain-specific language for volume processing and
visualization on distributed heterogeneous systems. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2407–2416, 2014.

[8] W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang, J.-G.
Lou, and D. Zhang. Text-to-Viz: Automatic Generation of Infographics
from Proportion-Related Natural Language Statements. IEEE Transactions
on Visualization and Computer Graphics, 26(1):906–916, 2020.

[9] K. Dhamdhere, K. S. McCurley, R. Nahmias, M. Sundararajan, and Q. Yan.
Analyza: Exploring Data with Conversation. In Proceedings of Interna-
tional Conference on Intelligent User Interfaces, pages 493–504, 2017.

[10] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. DataTone:
Managing ambiguity in natural language interfaces for data visualization.
In Proceedings of Annual ACM Symposium on User Interface Software
and Technology, pages 489–500, 2015.

[11] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann.
Surface techniques for vortex visualization. In Symposium on Visualization,
volume 4, pages 155–164, 2004.

[12] T. Günther, M. Gross, and H. Theisel. Generic objective vortices for flow
visualization. ACM Transactions on Graphics, 36(4):1–11, 2017.

[13] T. Günther and H. Theisel. The state of the art in vortex extraction. In
Computer Graphics Forum, volume 37, pages 149–173, 2018.

[14] J. Han, J. Tao, and C. Wang. FlowNet: A deep learning framework
for clustering and selection of streamlines and stream surfaces. IEEE
Transactions on Visualization and Computer Graphics, 26(4):1732–1744,
2018.

[15] M. Honnibal and I. Montani. spacy 2: Natural language understanding
with bloom embeddings. Convolutional Neural Networks and Incremental
Parsing, 2017.

[16] E. Hoque, V. Setlur, M. Tory, and I. Dykeman. Applying pragmatics
principles for interaction with visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 24(1):309–318, 2017.

[17] B. Jackson, T. Y. Lau, D. Schroeder, K. C. Toussaint, and D. F. Keefe. A
lightweight tangible 3D interface for interactive visualization of thin fiber
structures. IEEE Transactions on Visualization and Computer Graphics,
19(12):2802–2809, 2013.

[18] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary
density. In Proceedings of the Eurographics Workshop on Visualization in
Scientific Computing, pages 43–56, 1997.

[19] M. Kern, T. Hewson, A. Schätler, R. Westermann, and M. Rautenhaus.
Interactive 3d visual analysis of atmospheric fronts. IEEE Transactions
on Visualization and Computer Graphics, 25(1):1080–1090, 2018.

[20] B. Köhler, R. Gasteiger, U. Preim, H. Theisel, M. Gutberlet, and B. Preim.
Semi-automatic vortex extraction in 4D PC-MRI cardiac blood flow data
using line predicates. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2773–2782, 2013.

[21] A. Kumar, J. Aurisano, B. Di Eugenio, A. Johnson, A. Gonzalez, and
J. Leigh. Towards a aialogue system that supports rich visualizations of
data. In Proceedings of Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 304–309, 2016.

[22] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan. Gotree: A grammar
of tree visualizations. In Proceedings of CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2020.

[23] J. K. Li and K.-L. Ma. P4: Portable parallel processing pipelines for
interactive information visualization. IEEE Transactions on Visualization

and Computer Graphics, 26(3):1548–1561, 2020.
[24] J. K. Li and K.-L. Ma. P5: Portable progressive parallel processing

pipelines for interactive data analysis and visualization. IEEE Transactions
on Visualization and Computer Graphics, 26(1):1151–1160, 2020.

[25] J. K. Li and K.-L. Ma. P6: A declarative language for integrating machine
learning in visual analytics. IEEE Transactions on Visualization and
Computer Graphics, 27(2):380–389, 2021.

[26] R. Liu, M. Gao, S. Ye, and J. Zhang. IGScript: An interaction grammar for
scientific data presentation. In Proceedings of CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2021.

[27] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural language
to visualization by neural machine translation. IEEE Transactions on
Visualization and Computer Graphics, 28(01):217–226, 2022.

[28] J. Ma, C. Wang, C.-K. Shene, and J. Jiang. A graph-based interface for
visual analytics of 3D streamlines and pathlines. IEEE Transactions on
Visualization and Computer Graphics, 20(8):1127–1140, 2014.

[29] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky. The stanford corenlp natural language processing toolkit.
In Proceedings of the Association for Computational Linguistics: System
Demonstrations, pages 55–60, 2014.

[30] G. A. Miller. WordNet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995.

[31] A. Narechania, A. Srinivasan, and J. Stasko. NL4DV: A toolkit for gener-
ating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics,
27(2):369–379, 2020.

[32] A. Narechania, A. Srinivasan, and J. Stasko. NL4DV: A toolkit for gener-
ating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics,
27(02):369–379, 2021.

[33] B. Nsonga, M. Niemann, J. Fröhlich, J. Staib, S. Gumhold, and G. Scheuer-
mann. Detection and visualization of splat and antisplat events in turbu-
lent flows. IEEE transactions on visualization and computer graphics,
26(11):3147–3162, 2019.

[34] B. Nsonga, G. Scheuermann, S. Gumhold, J. Ventosa-Molina, D. Koschi-
chow, and J. Fröhlich. Analysis of the near-wall flow in a turbine cascade
by splat visualization. IEEE Transactions on Visualization and Computer
Graphics, 26(1):719–728, 2019.

[35] R. Peikert and F. Sadlo. Topologically relevant stream surfaces for flow
visualization. In Proceedings of Spring Conference on Computer Graphics,
pages 43–50, 2009.

[36] P. Rautek, S. Bruckner, M. Groller, and M. Hadwiger. ViSlang: A system
for interpreted domain-specific languages for scientific visualization. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2388–2396,
2014.

[37] C. Rössl and H. Theisel. Streamline embedding for 3D vector field ex-
ploration. IEEE Transactions on Visualization and Computer Graphics,
18(3):407–420, 2012.

[38] F. Sadlo, R. Peikert, and E. Parkinson. Vorticity based flow analysis and
visualization for Pelton turbine design optimization. In Proceedings of
IEEE Visualization Conference, pages 179–186, 2004.

[39] T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE Transac-
tions on Visualization and Computer Graphics, 12(6):1601–1612, 2006.

[40] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2016.

[41] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2015.

[42] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:
A natural language interface for visual analysis. In Proceedings of Annual
Symposium on User Interface Software and Technology, pages 365–377,
2016.

[43] A. Srinivasan and J. Stasko. Natural language interfaces for data analysis
with visualization: Considering what has and could be asked. In Proceed-
ings of the Eurographics/IEEE VGTC Conference on Visualization: Short
Papers, pages 55–59, 2017.

[44] A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction
for visual exploration and analysis of networks. IEEE Transactions on
Visualization and Computer Graphics, 24(1):511–521, 2017.

[45] Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: A semi-automated
model for translating natural language queries into meaningful visualiza-

10

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

tions. In Proceedings of International Symposium on Smart Graphics,
pages 184–195, 2010.

[46] J. Tao, C. Wang, N. V. Chawla, L. Shi, and S. H. Kim. Semantic flow graph:
A framework for discovering object relationships in flow fields. IEEE
Transactions on Visualization and Computer Graphics, 24(12):3200–3213,
2017.

[47] J. Tao, C. Wang, C.-K. Shene, and R. A. Shaw. A vocabulary approach
to partial streamline matching and exploratory flow visualization. IEEE
Transactions on Visualization and Computer Graphics, 22(5):1503–1516,
2016.

[48] H. Theisel, A. Friederici, and T. Günther. Objective flow measures based
on few trajectories. arXiv:2202.09566, 2022.

[49] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors
- an approach to visualizing the topological skeleton of complex 3D vector
fields. In Proceedings of IEEE Visualization Conference, pages 225–232,
2003.

[50] M. Tory and V. Setlur. Do what I mean, not what I say! design considera-
tions for supporting intent and context in analytical conversation. In IEEE
Conference on Visual Analytics Science and Technology, pages 93–103,
2019.

[51] Z. Wang, J. M. Esturo, H. Seidel, and T. Weinkauf. Stream line-based
pattern search in flows. Computer Graphics Forum, 36(8):7–18, 2017.

[52] H. Wickham. ggplot2: Elegant graphics for data analysis. New York, USA:
Springer, 2016.

[53] Q. Wu, T. Neuroth, O. Igouchkine, K. Aditya, J. H. Chen, and K.-L. Ma.
A declarative grammar of flexible volume visualization pipelines. IEEE
Transactions on Visualization and Computer Graphics, 25(1):1050–1059,
2018.

[54] Q. Wu, T. Neuroth, O. Igouchkine, K. Aditya, J. H. Chen, and K.-L. Ma.
DIVA: A declarative and reactive language for in situ visualization. In
IEEE Symposium on Large Data Analysis and Visualization, pages 1–11,
2020.

[55] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Pro-
ceedings of annual meeting on Association for Computational Linguistics,
pages 133–138, 1994.

[56] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic framework
for flow visualization. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1216–1224, 2010.

[57] L. Xu and H.-W. Shen. Flow web: A graph based user interface for
3D flow field exploration. In Proceedings of IS&T SPIE Conference on
Visualization and Data Analysis, 2010.

[58] X. Ye, D. Kao, and A. Pang. Strategy for seeding 3D streamlines. In
Proceedings of IEEE Visualization Conference, pages 471–478, 2005.

[59] B. Yu and C. T. Silva. FlowSense: A natural language interface for
visual data exploration within a dataflow system. IEEE Transactions on
Visualization and Computer Graphics, 26(1):1–11, 2019.

11

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer
Graphics. The final version of this record is available at: https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/xx.xxxx/TVCG.201x.xxxxxxx/

APPENDIX

1 ANALYSIS OF REJECTED QUERIES

We collected 26 rejected queries from a total number of 285 queries
in our user study. The most common types of rejected queries (10/26)
were the incomplete sentences, English grammar errors, and typos.
The incomplete sentences were caused by pressing the “enter” key by
mistake. Grammar errors do not necessarily lead to rejected queries.
One observed rejected query was “show the flow of T in China with
high”, where the system failed to connect the attribute “T” with the
constraint “high”. The second most common type of rejected queries
(6/26) was related to functionalities that were not implemented. For
example, one participant wanted to visualize the volume, which was
implemented after the user study. Six queries were rejected because
of parsing failure. A typical example was using multiple adjectives
consecutively, such as “cold fast north flow”. The other four failure
queries were due to mixing query formula with natural language, press-
ing the “enter” key repeatedly (two queries), and one unknown error.
We added a visual hint to indicate that the query is being processed to
avoid repeated enters after the study.

2 USER COMMENTS

The participants in our user study were positive with FlowNL in general.
A typical comment was “the tool is inspiring and it can help me produce
amazing animations in a short time”. One participant mentioned that
“I would like to deploy the tool on the super-computing platform I am
working on. I believe it will attract a lot of users.” For the participants
with domain background, three users commented that they would like
to use the tool in their research; while the other two stated that FlowNL
might be useful for demonstration, but excessive in analyzing their data
as they usually dealt with planar flows.

The participants also provided valuable suggestions in their com-
ments to improve the tool. Some suggestions are already adopted in the
latest version of FlowNL, such as visualizing objects in scalar fields,
showing filter thresholds, enabling pan-and-zoom for 2D filters, and
reducing the time for recycling particles of hidden objects, etc. Other
suggestions are helpful but not fully incorporated yet. For example,
removing derived objects from the interface, adding computational
operations (e.g, computing average), and specifying global parameters,
etc. Currently, we order the objects so that the hidden ones appear at
the bottom. The other functions are not implemented yet.

3 OBJECT AND ATTRIBUTE SPECIFICATION

Users may incorporate various kinds of objects by specifying the prim-
itive objects and their attributes in a meta file. Currently, FlowNL
supports unstructured point clouds and structured grids in multiple file
formats, such as VTK (visualization tool kit), NC (network common
data form), raw binary, and raw textural files. Figure 1 shows an exam-
ple of primitive object definition for the ECMWF data set. This data set
contains four types of primitives: flow patterns, grid (flow and scalar
fields), geographic regions, and streamlines. The streamlines and their
attributes are automatically generated by the system. Therefore, the
streamline primitive does not appear in the meta file.

A primitive contains several fields, including type, name, attributes,
derives, file paths, file type, etc. The most important one is the attributes
field, as this field defines the “content” of a primitive. FlowNL provides
multiple ways to flexibly specify the data of an attribute. We highlight
four different types of attribute specification in Figure 1. Figure 1 (a)
shows the attribute “latent (vector)” in the flow pattern primitive. In ad-
dition to the name “latent”, this specification also contains a type value
“FLOAT128”, which indicates that the attribute is a 128-dimensional
vector of floating-point numbers. The “latent” and “radius” attributes
of an element jointly defines a high-dimensional sphere in the deep
representation space. The deep representation is produced by an au-
toencoder that encodes the normalized distance matrices of streamline
points. The normalized distance matrix uniquely represents the shape
of a streamline segment, which is invariant under rigid transformations.
Therefore, the latent vector can be used to describe the shape of a
streamline segment. To represent irregular regions, multiple spheres

{

 "type": "unstructured",

 "name": "flow pattern",

 "attributes": [{"name": "latent", "type": "FLOAT128"},

 {"name": "radius", "type":"FLOAT"},

 {"name": "ID", "type":"INT"}],

 "derives": [{"name": "spiral"},{"name": "circulation"},{"name": "turbulence"}],

 "file path": "patterns.dat",

 "file type": "raw"

},

{

 "type": "structured",

 "name": "grid",

 "attributes": [{"name": "pv"},{"name": "q"},{"name": "vo"},{"name": "d"},{"name": "r"},

 {"name": "t"},{"name": "clwc"},{"name": "ciwc"},{"name": "cc"},{"name": "o3"},

 {"name": "geo position", "variables":[{"name":"longitude"}, {"name":"latitude"}]},

 {"name": “flow”, "variables":[{"name":"u"}, {"name":"v"}, {"name":"w"}]},

 {"name": "vel. mag.”, "definition":{"operator":"magnitude", "attribute”:”flow”}}],

 "dimension names":{"x": "longitude", "y": "latitude", "z": "level", "t": "time"},

 "dimension filters":{"t": "16"},

 "file path": "201809.nc",

 "file type": "nc"

},

{

 "type": "unstructured",

 "name": "geographic region",

 "attributes": [{"name": "geo position", "type": "FLOAT2"},

 {"name": "radius", "type": "FLOAT"},

 {"name": "ID", "type": "INT"}],

 "derives": [{"name": "china"},{"name": "indian ocean"},{"name": "mediterranean sea"}],

 "file path": "georegions.txt",

 "file type": "raw-text"

}

a

b

c

d

Fig. 1. The primitive object specification for the ECMWF data set.

are used. A preserved attribute ”ID” is used to correspond the spheres
to the derives.

Figure 1 (b) shows a simpler example of defining an attribute “r”
of the primitive “grid”. This primitive contains the flow and scalar
fields in an NC file. As the NC format is self-described, it does not
specify the dimension or data type of the attribute. Our data engine
can reorganize the variables in the NC file to form attributes as well.
Figure 1 (c) illustrates such an example. The attribute “geo position”
(geographic position) is defined by concatenating two variables ”lon-
gitude” and ”latitude” into 2D vectors. The data engine will span the
low dimensional attributes to the entire grid. The data engine can also
derive attributes from existing ones, as shown in Figure 1 (d). In this
example, the attribute “vel. mag.” (velocity magnitude) is derived as
the magnitude of the “flow” (the vector field).

The definition of primitive “geographic region” is similar to the
flow pattern. The only difference is that geographic regions are 2D
circles. Users may use similar specifications to define detected features
as point clouds. Note that we do not support unstructured mesh data in
our current implementation. As the objects are mainly used to specify
regions, the connections among points are less relevant in the current
version of FlowNL. We plan to incorporate mesh data in the future
extension, so that the integral surfaces in flow fields and isosurfaces in
scalar fields can be visualized.

1

