
Explore Your Network in Minutes: A Rapid Prototyping Toolkit for
Understanding Neural Networks with Visual Analytics

Shaoxuan Lai, Wanna Luan, and Jun Tao, Member, IEEE

Abstract—Neural networks attract significant attention in almost every field due to their widespread applications in various tasks.
However, developers often struggle with debugging due to the black-box nature of neural networks. Visual analytics provides an
intuitive way for developers to understand the hidden states and underlying complex transformations in neural networks. Existing visual
analytics tools for neural networks have been demonstrated to be effective in providing useful hints for debugging certain network
architectures. However, these approaches are often architecture-specific with strong assumptions of how the network should be
understood. This limits their use when the network architecture or the exploration goal changes. In this paper, we present a general
model and a programming toolkit, Neural Network Visualization Builder (NNVisBuilder), for prototyping visual analytics systems to
understand neural networks. NNVisBuilder covers the common data transformation and interaction model involved in existing tools for
exploring neural networks. It enables developers to customize a visual analytics interface for answering their specific questions about
networks. NNVisBuilder is compatible with PyTorch so that developers can integrate the visualization code into their learning code
seamlessly. We demonstrate the applicability by reproducing several existing visual analytics systems for networks with NNVisBuilder.
The source code and some example cases can be found at https://github.com/sysuvis/NVB.

Index Terms—Visualization model, toolkit, neural networks

1 INTRODUCTION

In recent years, neural networks have achieved tremendous success in
fields such as image recognition, natural language processing, speech
recognition, and game strategy. However, the black-box nature of
neural networks has brought some difficulties to their exploration and
application. The black-box nature refers to the opacity of internal
workings within neural networks, making it difficult for people to un-
derstand how neural networks learn from data to make predictions and
decisions. To understand the internal workings, various methods have
been proposed, among which visualization is relatively intuitive and
effective. The visualization technique helps to display the information
and mechanism of neural networks, offering insights into learned fea-
tures and patterns, thus further promoting their application in diverse
fields [1, 12, 17].

Existing approaches may reveal the behavior of neural networks by
showing distinct types of information. Some approaches visualize infor-
mation of the network itself, such as the network architecture [25, 31]
and the parameters of networks [36]. Some works reveal the behavior
by showing how the neural network responds to data samples. These
approaches visualize the (intermediate) output of neural networks, such
as activation [36,44] and embedding space [37,38]. They may compare
samples to identify the ones leading to anomalous behavior of the net-
work [22]. Sophisticated approaches are developed to derive attributes
from the neural network for understanding how the network transforms
input data at different levels, such as activation maximization [9,35,49].
These approaches can be considered feature generation techniques.

However, the aforementioned approaches all analyze neural net-
works based on certain assumptions, and they may not be able to an-
swer other questions. For example, the approaches visualizing network
architecture or training data may not reveal the internal information of

• Shaoxuan Lai and Wanna Luan are with the School of Computer Science
and Engineering, Sun Yat-sen University. E-mail:
{laishx3,luanwn}@mail2.sysu.edu.cn.

• Jun Tao is with the School of Computer Science and Engineering, Sun
Yat-sen University, National Supercomputer Center in Guangzhou, and
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai).
E-mail: taoj23@mail.sysu.edu.cn. He is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

the network, which is crucial for understanding the internal workings
of the neural network. And, visual analytics approaches based on in-
ternal information (e.g., activations), network parameters, and derived
features usually target specific network architectures [1] and are dif-
ficult to customize and extend. In addition, building visual analytics
interfaces is costly, as the complex data processing and interaction
scheme need to be implemented by the users. This can be challenging
for non-visualization experts.

To tackle these challenges, we design NNVisBuilder, a programming
toolkit for building prototypes of customized visual analytics interfaces.
It can be applied to neural networks of various architectures and an-
swer diverse kinds of questions. NNVisBuilder adopts the client-server
model. The server is responsible for data management and interaction
handling. It is compatible with PyTorch so that users can easily inte-
grate NNVisBuilder into their learning code seamlessly. The client is
developed using D3 [3] to exploit its rich visualization resources. Be-
sides, we have proposed a model for abstracting the data and workflow
of visual analytics interfaces for neural networks. This model facilitates
effective analysis of analytics systems for neural networks and assists
non-visualization experts in designing interactive systems.

The major contributions of this work are as follows:

• We design a programming toolkit, NNVisBuilder, to help devel-
opers rapidly build prototypes of customized interactive visual
analytics interfaces for understanding neural networks.

• We propose a data processing and interaction workflow in visual
analytics for neural networks based on the dimensions of tensors,
allowing users to build interfaces at a higher level.

• We introduce a model to abstract the visual analytics interface for
neural networks into flowcharts. This helps visually summarize
and compare analytics interfaces. It also guides the design and
implementation of interfaces using NNVisBuilder.

2 RELATED WORK

Our work falls into the category of Vis4AI (Visualization for Artificial
Intelligence) approaches as it aims at facilitating the understanding of
neural networks using visual analytics. Our approach also shares simi-
larities with visualization systems in the sense that it aims at developing
a framework for building customized interfaces. In this section, we
discuss the existing approaches related to these two topics.

https://github.com/sysuvis/NVB

2.1 Vis4AI
The existing Vis4AI approaches are summarized by several surveys.
Choo et al. [6] classified the approaches based on their goals, such as
education, debugging, and understanding. Rosa et al. [17] categorized
the relevant works from the perspective of the types of explanations.
Hohman et al. [12] and Alicioglu et al. [1] summarized the works from
similar perspectives, including usage, approaches, and users.

In this section, we summarize the work from two perspectives: the
data analyzed and the view (i.e., visual representation) provided. Study-
ing the data may inform us what are the data of interest, and studying
the view may inform us how the data should be presented. As these two
factors may vary across neural network architectures. We will discuss
them by architectures, including the recurrent neural network (RNN),
the convolutional neural network (CNN), the multilayer perceptron
(MLP), the graph neural network (GNN), and the Transformer.

For data in RNN, the hidden state is often shown. RNNVis
[26], LSTMVis [38], and Seq2SeqVis [37] visualize the hidden state
of RNN or its variant long short-term memory network (LSTM).
Seq2SeqVis [37] further visualizes the attention. Karpathy et al. [16]
visually analyzed the representations, predictions, and error types of
LSTM. Shen et al. [34] designed a visual analytics system that mea-
sured how feature selections affected the output distribution.

For data in CNN, the activation maximization [9, 35, 49] is com-
monly used to represent the learned features. Wang et al. [46] presented
CNNExplainer which visualizes the output of neurons and the convolu-
tion operation details. Das et al. [8] designed Bluff using adversarial
examples to help show the feature learned by a neuron. DECE [5] and
AdViCE [10] use the change from original samples to counterfactual
explanations to construct the interface. Li et al. [21] ranked the neurons
by their vulnerability levels and identifies image features that highly
stimulate a user-selected neuron. GANViz [44] visualizes the samples
and activation of different inputs of CNN in the generative adversarial
network (GAN).

For data in Transformer, attention is usually visualized. Vig et
al. [43] visualized attention in Transformer at multiple scales. They
introduced a high-level model view for visualizing all layers and at-
tention heads and a low-level neuron view for showing how individual
neurons interact to produce attention. Hoover et al. [13] designed
exBERT, which used a heatmap and links to visualize the multi-head
self-attention of input words. Wang et al. [45] designed DORIIO that
tightly integrates an overview of the roles of different attention heads
and multiple detailed views for comparing attention weights.

For data in GNN, node and topology attract more attention than
activations. GNNLens [15] shows the node information and topological
structure of the whole graph. Users can also zoom in and focus on the
topological structure of a specific node. VisGNN [27] decomposes a vi-
sualization into its data and visual components, and then jointly models
each of them as a large graph to obtain embeddings of the developers,
attributes, and visual configurations. TensorFlow Playground [36] vi-
sualizes the activation of grid data to serve as the decision boundary
neurons and the connection between layers of MLP.

From the perspective of views, for hidden states, it is common to
perform dimension reduction using t-SNE [41] and then visualize the
2D embedding using a scatter plot, e.g., [29, 37]. A distinct example
is that LSTMVis [38] uses parallel coordinates to visualize the hidden
state of temporal data. For text data, word clouds [26] and a view of
sentence lists [37,38] are used. Some systems (e.g., GNNLens) include
specially designed views for representing graph data. Many systems
use line charts to visualize the training metrics of neural networks,
e.g., [2, 28, 39]. Harley et al. [11] and Tzeng et al. [40] used DAG
to represent the structure of a CNN. CNNVis [23] and Tensorflow
Playground [36] use links to represent the connection data. Cao et
al. [22] proposed the datapath to represent the important connection
between neurons. ReVACNN [7] visualizes the underlying process
of a convolutional neural network by monitoring the filter-level 2D
embedding view. Chae et al. [4] visualized the classification results of
samples with stripes to reduce visual clutter.

As interactive systems, views on the interface are often interrelated
through interaction. Some systems allow the training process to be

adjusted through the interface [36], while some allow data or model
modifications through the interface and receive feedback. For exam-
ple, Seq2SeqVis [37] allows for modifying attention and observing
prediction results based on the updated attention, and Tensorflow Play-
ground [36] allows modifications to the connection.

Comparison with existing works. The design of our abstract model
and toolkit is inspired by the existing works. We extract common
patterns from these works to develop our approach, such as the types of
data, the visual representations, and the interactions. We also learn that
specialized designs (e.g., the river-based visualization [22]) are often
needed, and therefore support customization in many of our modules.

Our work differs from existing approaches in the sense that it aims
at rapid prototyping for diverse kinds of network architectures and
analysis purposes, instead of building a sophisticated interface for a
specific network. As a result, we design a model and an associated
visual representation for the data and workflow of neural networks.
The model validates and guides the development of our toolkit. It
guides the design and implementation of interactive interfaces for non-
visualization users. Finally, we provide a network-agnostic toolkit for
prototyping interfaces. The model and the toolkit are not available in
existing approaches.

2.2 Visualization System

As for the implementation of visualization systems, researchers have
developed various visual analytics interfaces for exploring, analyzing,
and communicating data. The web application is convenient and has
become the most popular platform. Many web-based visualization
techniques have been proposed. D3 [3] is a popular JavaScript library
for creating interactive visualizations on the web. Vega [33], enables
developers to declaratively specify visualizations using a JSON-based
grammar. Vega-Lite [32] is a simplified version of Vega, designed to
make it easier for developers to create visualizations without sacrificing
flexibility. ggplot2 [47] also provides a declarative grammar for speci-
fying visual encoding to create visualizations. Li et al. [18] developed
P4, a declarative visualization toolkit for building GPU-accelerated
visualization systems. The later version support parallel progressive
visualization for P5 [19], and enables using machine learning methods
to help process data in P6 [20].

Several Python libraries embed a JavaScript library to generate vi-
sualizations. They enable creating visualizations in Python without
writing JavaScript. For example, Altair [42] uses Vega-Lite to generate
visualizations. Matplotlib [14] is also a popular library for creating
visualizations in Python.

Comparison with existing works. The overall design of our toolkit
is similar to existing frameworks, but it also differs from them in the
emphasis on tensor data and neural networks. Our toolkit adopts a
client-server architecture. This separates the framework implementa-
tion in Python from the visualization development in JavaScript. This
allows the framework to be easily integrated into learning code and still
benefits from the rich suite of visualization tools in JavaScript.

3 DESIGN OF THE MODEL

We propose a model that abstracts the data, transformations of data,
and interactions in visual analytics systems for understanding neural
networks. This abstraction model is used to guide the design of our
programming toolkit. Our model considers relevant data as tensors
with multiple named dimensions and abstracts the interaction process
based on the dimensions of tensors. In this section, we first introduce a
foundational model framework, which identifies the key components to
be studied and guides the design of the exact model. We then review
a collection of existing works to extract the ingredients to instantiate
the framework and complete the model design. Finally, we provide
concrete examples by representing several existing visual analytics
interfaces using our model.

3.1 Foundational Model Framework

In the analysis of the foundational model framework, we identify the
key components in the design space and the connections among these

Table 1: The types of data, transformations, and responses supported
by existing approaches. For data, “T” and “NT” denote tensor and
non-tensor data, respectively. For transformations, “F”, “A”, and “O”
denote filtering, aggregation, and other transformations, respectively.
For responses, “C”, “P”, “H”, and “A” denote content modification,
parameter modification, highlighting, and animation, respectively.

Approach
Data Transformation Response

T NT F A O C P H A
RNNVis [26] ✓ ✓ ✓ ✓ ✓ ✓
LSTMVIS [38] ✓ ✓ ✓ ✓ ✓ ✓
Seq2SeqVis [37] ✓ ✓ ✓ ✓ ✓ ✓
ProtoViewer [50] ✓ ✓ ✓ ✓ ✓
CNNVis [23] ✓ ✓ ✓ ✓ ✓ ✓
CNNExplainer [46] ✓ ✓ ✓ ✓ ✓ ✓
Bluff [8] ✓ ✓ ✓ ✓ ✓ ✓
AeVis [22] ✓ ✓ ✓ ✓ ✓ ✓
DECE [5] ✓ ✓ ✓ ✓
AdViCE [10] ✓ ✓ ✓ ✓ ✓
VAC-CNN [48] ✓ ✓ ✓ ✓ ✓
EXBERT [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DODRIO [45] ✓ ✓ ✓ ✓ ✓
TF Playground [36] ✓ ✓ ✓ ✓
GANViz [44] ✓ ✓ ✓ ✓ ✓ ✓
GNNLens [15] ✓ ✓ ✓ ✓ ✓ ✓

components to be studied. Specifically, we considers the following
components: data, transformation, views,and interaction.

Data and transformation. Various kinds of data are involved in
neural networks, including input samples, outputs, intermediate data,
training profiles, and network parameters. The data may be transformed
to produce data for further analysis. Transformation should include
standard ones (e.g., filtering) and application-specific ones (e.g., de-
composing hidden states). Our model will focus on the types of data
and transformation instead of the meaning of data or how the data is
obtained.

Views and data. Views are basic ingredients to form visual analytics
systems. They determine how the data are visually encoded (e.g.,
mapping attributes to positions or colors). Our model will focus on how
the data are collected, organized, and bound to the views. Specifically,
we would like to study how to specify data in a neural network for
displaying, how to specify data for highlighting, and how to update the
views with online data. Note that the online data may be generated
on-the-fly by the network or through interactions.

Interaction and others. Interaction is related to all the other three
components. Although interactions are generated in views, our model
does not use them to modify the visualization directly. Instead, they are
used to specify transformations and update the data bound to the views.
The change of data is then reflected in the visualization. This design
isolates visualization from computation triggered by interactions.

Based on the above analysis, we summarize the foundational frame-
work of our model as follows:

• Data is tightly bound to views.
• Data can be transformed to produce other data.
• Interactions can affect data and transformations, leading to conse-

quent updates of views.

3.2 Literature Review

We review the existing visual analytics interfaces to guide the detailed
design of our model. Specifically, we summarize the existing work in
the following aspects:

• Types of data. For data types, we consider tensor and non-tensor
data. Tensors are heavily used in neural networks for representing
parameters and samples with regular shapes. Non-tensor data is
often involved as input data or samples with irregular shapes, such
as graphs and sentences. As tensors are standard and relatively
easy to handle, this review mainly analyzes the visualization of
non-tensor data in existing works.

• Types of transformations. We summarize the transformations
involved in existing approaches. Note that the transformation
in data preprocessing is independent of the visualization system.
Therefore, we do not consider this kind of transitions in our model
and treat the preprocessed data as input. Our review focuses
on the transformations during exploration, including the typical
transformations provided by interactive systems (e.g., brushing
for filtering data) and customized procedures as callback functions
triggered by interactions.

• Type of responses. We summarize how the existing approaches
respond to the data transformation and interaction. While we do
not consider responses as a component in our model, analyzing
the types of responses may guide the design of transformation
and interaction.

Our findings are summarized in Tab. 1. In terms of the data type,
we find that all approaches use tensors, and only four of them involve
non-tensor data. Three approaches are language-related models, visual-
izing words and sentences with varying lengths. The other approach
involving non-tensor data is GNNLens [15]. GNNLens targets the
graph neural network, which takes graphs as input. We notice that the
non-tensor data appear as input data in all these four approaches. This
means that the non-tensor data may only be visualized when we need
to refer to the original data samples. For understanding the behavior of
networks, it is usually sufficient to analyze tensors. In addition, we find
these approaches may still organize the non-tensor data in a regular
shape for visualization. For example, in Fig. 5, LSTMVis [38] displays
a fixed number of consecutive words in sentences. This indicates that
we may convert non-tensor data to tensors by truncating and padding.

For the transformation type, we find that filtering and aggregation
are the most commonly used. All approaches use filtering and nine
out of the sixteen approaches support aggregation. Additionally, three
approaches involve other sophisticated transformations. While filtering
and aggregation are standard, the other transformations may require
specific algorithms. This indicates our toolkit should provide both built-
in transformations and support customized ones through extensions.

For responses, we identify four common types of responses. The
first type is modifying the content of a view, such as displaying data
selected in interactions. This type of response is used by all approaches.
The second is adjusting parameters of a view. For example, an interface
may expand a view at the clicked position to show details. This can be
seen as modifying the position parameter of the view. The third is high-
lighting a subset of data in a view, which is adopted by all approaches
except TensorFlow Playground [36]. The fourth type is showing anima-
tion upon interactions. For example, TensorFlow Playground shows an
animation of network parameters and outputs over training steps.

To realize these four types of responses, our model and toolkit should
meet the following requirements. First, modifying the content of a view
can be achieved by updating the data bound to that view. But we should
note that the binding of data should be dynamic, meaning that the
visualization should be updated automatically after the change of data.
Second, highlighting changes the visualization style of a subset of data
points. Accordingly, our toolkit should be able to efficiently describe
subsets and visualization styles. Third, modifying the parameters and
animations should be implemented by specific views. Accordingly, our
toolkit should allow users to define their own views. These two types
of responses may require the update of data as well.

3.3 Our Model
Based on the foundational framework and the literature review, we
design a tensor-centric model. Non-tensor input data is reorganized, so
that they can be processed and visualized as tensors. The data transfor-
mation is designed to filter, aggregate, and join (multiple) tensors. The
views visually encode different dimensions in tensors, and the interac-
tion specifies transformation based on tensors. Users may extend the
transformation, interaction, and views to incorporate non-tensor data.
Please refer to the programming toolkit in Sec. 4). In section, we will
introduce a visual representation of our model based on tensors. The
design of data, transformation, and interaction models will be explained
using this representation.

D D1H1 HL I

(a) (b) (c)

T

Fig. 1: Visual representation of tensor data in our model. Each rounded
rectangle represents one tensor bound to a view, and a color box repre-
sents one dimension in that tensor. The light red, blue, and green boxes
correspond to data-related dimensions, network-related dimensions,
and other types of dimensions, respectively.

Data and view. Our model assumes the data to be tensors by default.
This means that we consider the data has a regular shape and multiple
dimensions. Fig. 1 illustrates three examples of tensor data bound
to three views. The data bound to the same view are grouped by a
rounded rectangle. In (a), the tensor has a single dimension related to
the original data, as indicated by the letter “D” and the red color. In (b),
the tensor has two dimensions related to the hidden states (“H”) and
original data (“D”), respectively. The superscript is used to distinguish
multiple dimensions with the same meaning. Here, “H1” indicates
that it is one of the multiple dimensions related to hidden states. The
subscript is used to denote a subset extracted along that dimension.
Here, “D1” indicates that the tensor is filtered by the value of original
data “D”. In (c), the tensor represents the hidden states (“H”) of the
user input (“I”) at the layer (“L”) and time step (“T”). This kind of
data might be automatically collected by our toolkit during the network
training.

DH

(a)

F

D

DH

A

DH1

D

O

D1H

(b) (c)

F

DH1

(d)

F

Fig. 2: Visual representation of transformation in our model. (a) shows
filtering on dimension “H”, (b) shows aggregation, and (c) shows fil-
tering followed by other transformations that create another dimension
“H”. (d) shows a simplified representation of (a) when the upper tensor
“H×D” is not visualized.

Transformation. A transformation consumes one tensor and pro-
duces another, indicated by a transformation arrow between the two
tensors. A blue label with a letter on the arrow indicates the transfor-
mation type. When multiple transformations are applied, we merge
the arrows and use multiple letters to indicate the respective types of
transformations. In Fig. 2 (a), an arrow “F” indicates a filtering trans-
formation. Note that we do not state the filtering criterion on the arrow,
as the dimension “H1” in the output already indicates that the data is
filtered by the hidden state “H” unambiguously. Similarly, in Fig. 2
(b), we can easily read that the aggregation (“A”) is performed along
the “H” dimension as it disappears after the transformation. Note that
transformation may lead to an extension of dimensions as well. For
example, Fig. 2 (c) shows a composite transformation that filters the
“D” dimension and brings in another dimension “H”. When the input
data is not visualized, we may use a small rectangle to represent the
input tensor, as shown in Fig. 2 (d).

Interaction. When users interact with a view, an interaction will
be created. The interaction carries two pieces of information: a subset
from the data bound to that view, and a transformation to be performed.
An interaction is represented by an interaction arrow. Fig. 3 illustrate
three examples of interaction. Fig. 3 (a) shows an interaction that
modifies the data in the lower view using a widget (the triangle). Note
that the widget and the view may hold data in different spaces. In this
case, a mapping must be applied to convert the interacted subset in

DH

(b)

F

D

DH

DH1

(c)

M

(a)

H

D

Fig. 3: Visual representation of interactions. (a) shows a mapping from
a widget to the data in a view. The triangle indicates an interactive wid-
get (e.g., a slider). The green label indicates that the mapping is applied
to the interaction data (i.e., subsets). (b) and (c) show two examples
where multiple views are involved in the respective interactions.

the widget to a corresponding subset in the view. Fig. 3 (b) shows an
interaction involving three views. Users interact with the left view to
filter the data in the upper view and visualize the filtered data in the
lower view. The subscript “H1” in the lower view indicates the data
are filtered based on the hidden states (“H”). Fig. 3 (c) shows a simpler
interaction between two views without transformation.

Compared to existing models for visual analytics, our model centers
on the tensor data and the neural network workflow. We also design
a concise flowchart representation for the model, that highlights in-
formation regarding tensors and transformations. This representation
allows us to examine whether our model is able to resemble the existing
analytics approaches, and assists non-visualization experts in designing
their system. In the future, it may be extended for a visual programming
purpose as well (please see Sec. 7).

IH D D D

FM

M

b

H1

a

c d e

Fig. 4: Using our model to illustrate the design of LSTMVis [38].

3.4 An Illustrative Example: Prototyping LSTMVis
LSTMVis is an interactive visualization system for analyzing a long-
short time memory (LSTM) network which processes language inputs.
Its analysis aims at discovering the connections between the input
languages and the patterns of hidden states produced by the network.
In this example, we analyze the design of LSTMVis [38] using our
model, as shown in Fig. 4. Please also refer to Fig. 5 for a prototype
resembling LSTMVis interface.

Data of concern. We first start with the data required by LSTMVis.
LSTMVis concerns the following information: First, the temporal pat-
terns of hidden states. This requires a tensor incorporating the hidden
dimensions “H” and the input data “I”, as shown in (a). Second, the hid-
den dimensions with a certain pattern of interest. This requires a tensor
representing a subset of dimensions “H1”, as shown in (b). Third, the
segment of sentences corresponds to user-selected hidden dimensions.
LSTMVis shows the segments of sentences together with two associ-
ated attributes. This requires three tensors showing the original data
“D”, as shown in (c), (d), and (e). This analysis produces the dashed
rectangles (i.e., data and corresponding views) in the abstract model. In
the next step, we need to connect the rectangles with transformations
and interactions.

Transformations and interactions. The exploration using LSTM
can be summarized by two tasks: identifying hidden dimensions of
interest and observing data related to selected dimensions. For the
first task, users observe temporal patterns of hidden states and select

d ecb

a

Fig. 5: The prototype resembling LSTMVis built with NNVisBuilder. (a) shows a parallel coordinates plot for embedding. (b) shows a list of
dimensions for selection. (c) shows the sentence segments containing the selected words. (d) and (e) show the match count and POS taggers
corresponding to the words in (c).

DataTransformation Interaction

Nueral Network View

Event Handler

Data Collection view data

Server Client

Fig. 6: The architecture of our NNVisBuilder toolkit. The stars high-
light modules that should be specified or customized.

hidden dimensions exhibiting desired patterns in (a). The selected ones
will be displayed in (b). This leads to the first interaction, represented
by the edge from (a) to (b). For the second task, users select hidden
dimensions in (b) and observe related sentence segments in (c), (d),
and (e). This means that we need to map the selected dimensions to
sentence segments (green “M”) and filter the segments accordingly
(blue “F”).

A guide to applying our model. Following this example, users
without professional visualization knowledge may use our model to
guide the development of their own exploration systems in two steps.
First, users may list all the data of concern by views (e.g., the dashed
rectangles in Fig. 4). Each view should contain the tensor dimensions
(i.e., attributes of data). Second, users may connect the related views us-
ing transformations and interactions. The content in views may suggest
the appropriate transformation. For example, an edge between different
dimensions (e.g., “H1”→“D”) indicates the need for a mapping. Please
refer to Sec. 5 for more examples. In the next section, we will explain
how our toolkit realizes the abstract model.

4 PROGRAMMING TOOLKIT

We design NNVisBuilder as a toolkit to realize the abstract model
described in Sec. 3. This section starts with an overview of the toolkit
and is followed by the design and usage of each module.

4.1 Overview
NNVisBuilder adopts a client-server model, as shown in Fig. 6, where
the client is responsible for visualization and interaction, and the server
is responsible for data management.

Client and views. In our current implementation, the client is a web
interface, consisting of a suite of views developed using D3 [3]. Users
may implement their own views for customization as well. When users
interact with the views, the client will create an interaction event and
send the event to the server.

Server and data flow. The server collects data from the target neural
network (e.g., samples, labels, latent encoding, and network parame-
ters), and organizes the data in the form of tensors. It also handles the
interaction events from the client. This may trigger transformations
(e.g., filtering) to update the tensors managed by the server or invoke
external computations (e.g., tuning the network) to update existing data
or produce new data. The server is implemented in Python. It cur-
rently supports neural networks developed using PyTorch [30], which
is extensively used in the deep learning community.

Development with NNVisBuilder. To build a customized interface
with NNVisBuilder, users need to specify: which data to visualize and
explore, how are the data visualized, and what are the interactions and
transformations, as shown by the starred modules in Fig. 6. In the
abstract model (e.g., Fig. 4), the specification of data and views creates
the dashed rectangles, and the interactions and transformations specify
the arrows. In this section, we will explain the design and usage of
NNVisBuilder using the prototype of LSTMVis as an example.

4.2 Data and View

NNVisBuilder can collect and manage data from the target neural net-
work, including embedding (i.e., hidden states produced from samples),
connections (i.e., network parameters), and gradients for developers.
Developers only need to define an NNVisBuilder object. They can
bind the model to this object and specify their data of interest. The
NNVisBuilder object will then collect and manage the specified data.
It will keep track of the managed data and report the update to views
where the data are bound. It can also record the history of managed
data for later investigation on demand. Please refer to Fig. 7 (0) for
an example of binding the builder object to the network and adding
embedding for management in LSTMVis.

Creating data objects. NNVisBuilder provides a unified interface
for managing static and dynamic data. The static data are independent
to the interaction (e.g., data extracted from the network). Therefore,
they can be produced before the client is launched. For example, in
Fig. 5, the view (a) of LSTMVis shows the hidden embedding of words,
which is available before defining the corresponding view. In this
case, users may provide the values to construct the data objects ‘word’
and ‘embedding’, as shown in Fig. 7 (a). NNVisBuilder also supports
out-of-memory storage through external files, which helps users build
interfaces for large-scale models.

For data that are generated during the interaction, NNVisBuilder still
allows users to create the data objects and bind to the views before the
data are available. For example, in Fig. 5, the view (b) of LSTMVis

words = Data(value=all_words)
embedding = Data(value=builder.embeddings['gru'].T)
plc_data = embedding.filter(name='dims').filter(dim=1, name='words').data()
x_titles = words.apply_transform(embedding.named_filters['words'], dim=0)
plc = ParallelCoordinate(plc_data, highlighter=HighLighter(), x_titles=x_titles)
plc.set_position([15, 15])

selected_dims = Data(data_type=Type.Vector)
selected_dims_view = HeatMap(None, position=plc.align('under(30, next)'),
 labels=selected_dims, highlighter=HighLighter())

a

b

builder = Builder(encoder)
builder.add_hiddens(['gru'], component='rnn')
feed input into the model
���

0

IH D D D

FM

M

b

H1

a

Fig. 7: The code for the data collection and view creation in the pro-
totype of LSTMVis. The thumbnail at the corner highlights the corre-
sponding modules in the abstract model (Fig. 4). The code block in (0)
collects data from the target neural network. The code in (a) and (b)
creates the respective views in the interface (Fig. 5).

filter2d = Filter(filter_type=Type.Matrix)
sentence_data = words.apply_transform(filter2d)
sentence_list = SentenceList(sentence_data)

c

dmatch_count = Data(data_type=Type.Vector)
selected_match_count = match_count.apply_transform(filter2d)
match_count_view = HeatMap(selected_match_count)

d

dpos_data = Data(value=all_pos)
selected_pos_data = pos_data.apply_transform(filter2d)
pos_data_view = HeatMap(pos_data)

e

IH D D D

FM

MH1

c d e

Fig. 8: The code for the transformation definition and view creation in
the prototype of LSTMVis. The thumbnail highlights the corresponding
modules in Fig. 4. (c) defines the transformation and one view. (d) and
(e) defines two additional views using the transformation.

shows the indices of selected dimensions, which is not available when
constructing the interface. In this case, users may simply define a data
object ‘selected_dims’ by specifying its data type without providing
the values, as shown in Fig. 7 (b). The values of this object will be
updated by a transformation triggered by interactions, which will be
explained in Sec. 4.3.

Creating Views. A view can be created easily with the correspond-
ing data object provided. For example, in Fig. 7 (a) and (b), the parallel
coordinates view to visualize hidden states and the heatmap to show
selected dimensions are each created with one line of code.

In NNVisBuilder, the views provide customizable modules to specify
their behavior. For example, the highlighter specifies how selected data
should be highlighted in a view. Users may use the default highlighting
scheme of a view by providing an empty highlighter, as shown in Fig. 7.
Alternatively, they may create their own highlighter for each view as
well. In addition to the data objects and modules, the views have many
other associated attributes. These attributes may be provided in the
object construction or specified at a later step. For example, in Fig. 7,
the parallel coordinates view ‘plc’ does not specify a position during
construction and a default position will be used. Users may specify
a coordinate as the position explicitly later. Users may also align a
view with an existing one, Please see the construction of the selected
dimensions view (‘selected_dim_view’) in Fig. 7 (b).

Data transitions to views. A view can bind multiple data objects
corresponding to different visual channels. When binding a view with
a data object, NNVisBuilder will record this relationship between the
view and the data. Once the data is produced or updated, the server
will convert the tensor data into DataFrame [24] objects and send it to
the client in JSON format. To tackle large-scale data, users may apply
filters to the data object to reduce its size. Random sampling or other
sophisticated sampling approaches may be used as filters. Note that we
consider the data reduction as a user-specified option and will not apply
any filtering or sampling automatically.

View-i

View Data

Selector

Highlighter

Server View-j

Selector

Highlighter

Network

Data

TransformationSubset

View Data

Subset

Fig. 9: Interaction mechanism of NNVisBuilder. The red, blue, and
green arrows illustrate three common pathways in the interaction work-
flow of NNVisBuilder, respectively.

4.3 Transformation

Similar to the data object, the transformation object can be defined
statically with available data or dynamically without actual data. For a
dynamic transformation object, the transformation will be performed
when the required data is provided in interaction events. The same
transformation can be applied to multiple data. We will use LSTMVis
as an example to explain these two properties (i.e., applying a single
dynamic transition to multiple data).

Usage example. In Fig. 5 (c), (d), and (e), the visualized data are
produced by filtering three different tensors based on the user-selected
patterns. For example, the sentences (‘sentence_data’) are filtered from
all input words (‘words’) and visualized in the view (‘sentence_list’).
In this case, both the data and transformation related to the sentence
view should be generated dynamically during interaction. With NNVis-
Builder, users may simply define the dynamic transformation object ‘fil-
ter2d’ by specifying its type without any data. Users may further apply
this transformation to produce the dynamic data object ‘sentence_list’,
and use this data object to create the view. Once the transformation
is performed during interaction, the data and the visualization will
be automatically updated. The same filtering transformation can be
applied to the match count and Part-Of-Speech (POS) tagger data of
sentences to extract information associated to the selected dimensions.

Transformations supported. NNVisBuilder provides two basic
transformations (i.e., filtering and aggregation), implements several
complex transformations, and supports customized transformations.
For filtering and aggregation, users need to specify the tensor and dimen-
sion to apply the transformation. Aggregation requires a further type
of operation to specify how the data is aggregated, such as summation,
averaging, and computing maximum. The complex transformations
involved in neural network visualization are often application-specific.
Therefore, we only implement some algorithms as examples, such as
activation maximization.

4.4 Interaction

The interaction mechanism is shown in Fig. 9. An interaction event
is invoked when users interact with elements in a view. This process
starts from the selector of the view, which is responsible to identify the
subset of interacted data points. This interacted subset will be passed
to a highlighter, which updates their visualization style. The selector
and highlighter define how a view reacts to interaction with itself.

Typical data update pathways. The interaction involving multiple
views may follow three typical pathways, as illustrated by the red, blue,
and green arrows in Fig. 9, respectively. Following the red pathway, the
interacted subset is transformed and highlighted in another view (e.g.,
brushing and linking). Note that the transformation is optional. It is
usually required when the two views visualize data in different spaces
and can be omitted when the data are in the same space. Following
the green pathway, the interacted subset is used to update the data
visualized in another view. For example, in LSTMVis, the selected
dimensions are used to identify sentence segments. Following the blue
pathway, the interacted subset is processed by the network and updates

def f(value):
 selected_dims.update(value)
 selected_dims_view.highlighter.update(list(range(len(value))))
plc.highlighter.add_mapping(f)

g

def f(value):
 r = []
 # compute match_count for each word and save in the variable r
 ���
 match_count.update(r)
 s = match_count.argsort(reverse=True)[:8]
 filter2d.from_1d(s, 10, words.size()[0])
selected_dims_view.highlighter.add_mapping(f)

h

IH D D D

FM

MH1

Fig. 10: The code for the interaction in LSTMVis prototype. The
thumbnail highlights the corresponding interaction arrows. (g) defines
the interaction between the parallel coordinates view and the selected
dimensions view. (h) defines the interaction between the selected
dimensions view and the three views related to the selected sentence
segments.

the data in another view. Users may define their own pathway as a
mapping of the highlighter.

Selectors and highlighters. A selector defines which tensor di-
mensions are used to select the items. For example, for a heatmap
visualizing a second-order tensor, the selector may select rows of data
points along the first dimension of the tensor or columns of points along
the second dimension. NNVisBuilder provides various kinds of selector
templates for different types of views.

A highlighter defines the visualization style of the interacted subset.
By specifying the highlighter style, users may change the size or color
of the selected subset. A highlighter can be shared by multiple views.
In this case, the selected subset is automatically synchronized across
views without invoking additional updates of data.

NNVisBuilder provides an additional multi-selector and multi-
highlighter mechanism, which allows composite selection and high-
lighting rules to be defined using preset templates. For example, the
scatter plot provides templates for selecting points to the left and above
the brushed region. Users can combine these two selectors to create
a multi-selector that selects the intersection or union of these points.
Similarly, the multi-highlighter can customize the visualization styles
of multiple selected subsets. For example, a multi-highlighter can
assign two different colors to two consecutively selected subsets and
the third color to their intersection. This may be handy to support
comparative visualization in a superposition manner. Besides, NNVis-
Builder supports view duplication, which may be useful for creating
small multiples and facilitate comparisons in a juxtaposition manner.

Usage example. Fig. 10 shows the code to add interactions to our
LSTMVis prototype. The code in Fig. 10 (g) defines the interaction be-
tween the parallel coordinates view (‘plc’) and the selected dimensions
(‘selected_dims_view’). The mapping function ‘f’ updates the data in
the selected dimensions view. By associating ‘f’ with the highlighter of
the ‘plc’ view, the function ‘f’ will be called when data are selected in
the ‘plc’ view. This realizes the red path in Fig. 9. The code in Fig. 10
(h) defines the interaction between the selected dimensions view and
the three views showing attributes of corresponding sentence segments.
Similarly, we associate the highlighter of the selected dimensions view
with a mapping function ‘f’. This mapping function computes the
corresponding match count values and modifies the filter (‘filter2d’) to
extract sentence segments containing the identified word. This realizes
the green path in Fig. 9.

5 EVALUATION

In this section, we present two additional example applications to
demonstrate the capabilities and usefulness of NNVisBuilder for devel-
oping prototypes of interfaces for different neural network architectures.

5.1 TensorFlow Playground
Analyzing the interface. We demonstrate how to use NNVisBuilder
to build a prototype of TensorFlow Playground, which supports anima-
tion and interactive updates of the network. TensorFlow Playground

Fig. 11: The prototype of TensorFlow Playground [36]. The sample,
the decision boundaries, and the inter-layer weights are shown.

D1

F

D2

P

c

b

a

F

Fig. 12: Using our model to illustrate the design of TensorFlow Play-
ground. The rectangles containing views with solid boundaries denotes
repeating pattern.

visualizes the parameters and output of an MLP model over training
steps. The interface created by NNVisBuilder is shown in Fig. 11. The
two rectangles in the leftmost column represent two different datasets.
Users may switch datasets by clicking the corresponding rectangle. The
three columns in the middle display the decision boundaries at three
layers, respectively. Each rectangle corresponds to one dimension of
the layer’s output. The rightmost view shows the final classification
results. This interface allows users to modify the learning rate and the
weights of the network. It also allows users to specify a training step
for visualization or animate through the entire training process.

Model. TensorFlow Playground visualizes a multi-layer perceptron
(MLP) network, as shown in Fig. 11. It concerns three types of infor-
mation: (a) the inter-layer connections, (b) the decision boundaries of
each dimension at each layer, and (c) the labels, as shown in Fig. 12.
Note that we use a rectangle with a solid boundary to denote small mul-
tiples without repeating the view. A slider is used to filter the decision
boundaries, and an input box is used to update the learning rate of the
network, leading to the transformations in (b).

Building the interface. NNVisBuilder provides templates for gen-
erating grid data and encapsulates the process of computing decision
boundaries from the grid data. Note that NNVisBuilder will not au-
tomatically record the history of every parameter, and users need to
explicitly invoke the data collection in the training process. In this
example, we collect the connections and decision boundaries. The data
collection module will automatically organize the data, so that the time
step can be used to access corresponding data.

Fig. 13 shows our code to create views and define interactions. The
code in (a) iterates through all layers and dimensions to create the
respective view of decision boundaries. Each view is associated with
a transformation to filter data along the time dimension (i.e., training
step). The last five lines of code create views for the final result, x and
y signals, and two datasets, respectively. The data in these views do not
change over training steps. The code in (b) adds link views to connect
neighboring layers. Each link view is associated with an ‘onclick’

filter = Filter(dim=0)
for i in range(len(layers)):
 layer = layers[i]
 embeddings.append(Data(value=builder.embeddings_g[layer]))
 # reshape to generate time dimension
 e_data = embeddings[-1].reshape(���)
 for j in range(out_features[i]):
 # create one view for each dimension in each layer
 view_data = e_data.apply_transform(filter).filter(dim=1, value=j).data()
 view = ScatterPlot(grid, color_labels=view_data)
view_final = ScatterPlot(input_x, position=view.align(), color_labels=input_y)
view_x = ScatterPlot(grid, color_labels=grid[:, 0])
view_y = ScatterPlot(grid, color_labels=grid[:, 1])
view_dataset1 = ScatterPlot(input_x1, color_labels=input_y1)
view_dataset2 = ScatterPlot(input_x2, color_labels=input_y2)

a

for i in range(len(layers)):
 connections.append(Data(value=builder.connections[layers[i]]))
 link_labels = connections[-1].apply_transform(filter).reshape(-1)
 # Define the endpoint position of links
 node_positions = Data(value=���)
 link = LinkView(node_positions=node_positions, labels=link_labels,
 colors=link_labels.sign(), width='labels')
 link.onclick(get_modify_weight(i, link_labels))

b

slider = Slider(range=time_steps)
def f(value):
 filter.update(value)
slider.onclick(f)

c

def f(value):
 builder.reset_embedding()
 # train model using dataset 1
 ���
 for i in range(len(layers)):
 layer = layers[i]
 embeddings[i].update(builder.embeddings_g[layer])
 connections[i].update(builder.connections[layer])
 input_x.update(x_train1)
 input_y.update(y_train1)
view_dataset1.onclick(f)

d

Fig. 13: The code used to build the prototype of TensorFlow Playground.
(a) defines the views for different layers and inputs. (b) defines the link
views between layers. (c) defines a slider to select a training step. (d)
defines the behavior of selecting a dataset.

function that specifies how the network updates the data (i.e., the blue
pathway in Fig. 9). The code in (c) and (d) specifies the interactions
corresponding to the slider and the dataset. Note that NNVisBuilder
may change parameters or training samples of the network, but it does
not support modification of the network architecture (e.g., changing the
number of layers). Users need to change the network model and re-run
NNVisBuilder.

5.2 Customized CNN Visualization

Previous examples analyze existing systems and build prototypes of
them. In this example, we customize a visual analytics interface for a
convolutional neural network (CNN), as shown in Fig. 14.

Model. The model of the analytics interface for CNN is shown in
Fig. 15. In terms of data, we are interested in: (a) the picture class, (b)
the convolution output, (c) the convolution kernels, (d) the activations,
(e) original images, and (f) final outputs. For the interaction, we would
like to: First, select a picture class and show data related to that class.
This leads to the two filtering transformations from (a). Second, select
a kernel and show the related convolution results. This leads to the
arrow from (c) to (b). Third, select samples from latent space and see
the corresponding images.

Building the interface. Then we realize the model using NNVis-
Builder. The source code is shown in Fig. 16. The code in (a) defines
the slide and corresponding interaction. This interaction updates a
filter, which is bound to view (b) and (e). Therefore, when the slider
is changed, the content in (b) and (e) will be updated. The code in (b)
defines a tooltip, which is shown when the kernel in (c) is selected.
The first three lines in (c) define an event handler that brings in the
tooltip (b). As there are multiple channels in the kernel, a maximum
aggregation is applied to the image data to ensure that the strong activa-
tion signals are not omitted. For the embedding views in (d), t-SNE is
used to reduce the dimension of the latent spaces to 2D, so that they
can be visualized using scatter plots. Note that, to draw images, our
current implementation of NNVisBuilder will store temporary images

a

bc

d

e

f

Fig. 14: A customized interface for understanding CNN using image
data. (a) shows a widget for selecting image class. (b) shows the convo-
lution result of a selected sample using a selected kernel. (c) shows the
convolution kernels. (d) shows the 2D embedding of activations. (e)
shows the image samples. (f) shows the output at the last layer.

F

c

D

a

D1 D1

b

D2

D

e

d

f

H C

F

Fig. 15: Using our model to analyze the structure of the visual analytics
interface for CNN.

and send the file paths to the client for display. This may damage
the performance of large scale datasets. In addition to data reduction
through filtering and sampling, we will incorporate modules to display
the images directly from data in future extensions.

6 TARGET USERS AND USAGE GUIDE

In this section, we will explain the goal of NNVisBuilder and identify
the potential users that may benefit from the tool. We will then discuss
how the potential users may use the tool.

Design goal. Our NNVisBuilder targets the usage scenario where
rapid prototyping of visual analytics interface for understanding neural
networks is desired. It incorporates the common types of data, trans-
formations, and interactions that are used in existing visual analytics
systems or neural networks. It facilitates easy data management that
is tightly bound to the data flow of neural networks. It reduces the
effort for writing data and interaction management code, and allows
developers to focus on the design of the interface.

But we should also note that NNVisBuilder is not designed to replace
the specialized visual analytics approaches. In particular, NNVisBuilder
may not reduce the effort for developing interfaces with complicated
visual design, such as seamlessly organizing many special glyphs. In
this case, it can still be costly for users to map the tensor data to the
complex visual representation, and NNVisBuilder may be less helpful.

Target users. NNVisBuilder targets users with the need for rapid
prototyping, who are less concerned about fine-level visual representa-
tion. These users may include:

First, practitioners in the learning community are the key target
users. NNVisBuilder allows them to investigate the learned parameters,
outputs, and intermediate results in desired manners. As the network
may be studied from different perspectives, NNVisBuilder is helpful

t_data = Data(value=list(range(sub_size)))
t_prefix = Data(data_type=Type.Scalar)
toolTip = Tooltip(t_data, prefix=t_prefix)

b

class_filter = Filter(dim=0, value=0)
select = Select(options=classes)
def f(value):
 class_filter.update(value)
select.onclick(f)

a

def handler(value, position):
 t_prefix.update('%s-%d' % (value, class_filter.value_()))
 toolTip.set_position(position)

layers = ['conv1', 'conv2', 'fc1', 'fc2', 'fc3']
for i in range(2):
 layer = layers[i]
 embedding = builder.embeddings[layer]
 for j in range(builder.name2module[layer].out_channels):
 for c in range(num_class):
 pics = Data(embedding[c*10:(c+1)*10, j, :, :])
 # save pictures of all conv output
 for k in range(sub_size):
 Data(pics[k]).save_img(k, prefix='%s-%d-%d' % (layer, j, c))
 # save pictures of aggregation with different prefix
 pics.aggregation(op='max').data()\
 .save_img(c, prefix='%s-%d' % (layer, j))
 pic_view = Picture(class_filter, prefix='%s-%d' % (layer, j))
 pic_view.onclick(handler)

c

hl = HighLighter(style='circle_size')
for i in range(2, 4):
 embedding = builder.embeddings[layers[i]]
 data = Data(TSNE().fit_transform(embedding))
 sp = ScatterPlot(data, color_labels=labels, highlighter=hl, title=layers[i])

d

g_data = Data(data_type=Type.Vector)
gallery = Gallery(g_data)
def f(value):
 g_data.update(value)
hl.add_mapping(f)

e

embedding = builder.embeddings[layers[-1]].reshape(num_class, sub_size, -1)
img_pos = Data(TSNE().fit_transform(images.cpu().view(���)))
for i in range(embedding.shape[2]):
 pos = img_pos.apply_transform(class_filter)
 labels = Data(embedding[:, :, i]).apply_transform(class_filter)
 sp = ScatterPlot(pos, color_labels=labels)

f

Fig. 16: The code for building the customized interface for CNN. Each
code block defines the respective view in Fig. 14.

for them to agilely switch the “viewing angle” to examine the networks.
Second, tutors in the learning community may benefit from NNVis-

Builder as well. NNVisBuilder allows them to illustrate the behavior of
networks of different architectures. More importantly, when students
raise questions regarding specific components of a network, the tutor
may edit a few lines of code to provide new perspectives.

Third, NNVisBuilder may facilitate the collaboration between re-
searchers in learning and visualization communities. Although special-
ized visual analytics approaches are more effective on their respective
target problems, NNVisBuilder may still be helpful to examine the re-
search goals and tasks in the initial stage. Additionally, we should note
that the collaboration with visualization experts may only be available
to a small amount of researchers in learning. Therefore, NNVisBuilder
may still hold its unique value.

Guide for practitioners in the learning community. Non-
visualization experts may use NNVisBuilder without modifying the
visual representations. As described in Sec. 3.4, they may start by
listing all the data of concern and organizing them by views. Then, they
may identify the transformations and interactions required to connect
the views. These steps will produce an abstract model. They may
follow the examples in this paper to identify the transformation and in-
teraction available to realize the model. We also provide a step-by-step
example guide for them to learn the usage. This guide is provided in
both textual and video formats. In addition, a complete description of
the API is available on our GitHub repository as well. Please refer to
the supplemental material for details.

Guide to extending NNVisBuilder. Although NNVisBuilder mainly
targets non-visualization users, we welcome visualization developers
to contribute to possible extensions. Both the visual representation and
the interaction are customizable. Developers may redefine the selector
and highlighter to customize the interaction behavior. They may also
specify interaction mappings and callback functions, as shown in previ-

class MyView(View):
 def ��init��(self, data, position, size, ���):
 super(MyView, self).��init��(data, position, size, ���)
 # ���

 def generate_vis_data(self):
 vis_data = pd.DataFrame()
 vis_data['cx'] = self.data[:, 0]
 vis_data['cy'] = self.data[:, 1]
 vis_data['idx'] = list(range(len(self.data)))
 # ���
 return vis_data.to_json(orient='record')

 def core(self):
 super(MyView, self).core()
 self.draw(f"""
 g{self.idx}.selectAll('circle')
 .data(vis_data).enter().append('circle')
 .attr('cx', d �� d.cx)
 .attr('cy', d �� d.cy)
 .attr('idx', d �� d.idx)
 �����
 """)

a

b

c

Fig. 17: The code for defining a customized view, using the scatter plot
as an example. (a) overloads the base class. (b) converts the tensor data
to visualization data. (c) visually encodes the data using attributes in
the D3 view [3].

ous examples. Here, we provide an example to explain how to create
a customized view using the scatter plot as an example, as shown in
Fig. 17. Developers need to overload the base class ‘View’ and simply
implement two functions that bridge the Python server and the D3 [3]
interface. The function ‘generate_vis_data’ converts the tensor data to
JSON format, and the function ‘core’ specifies how the JSON data are
visualized. Developers may refer to the supplemental material for the
API and other details.

7 LIMITATIONS AND FUTURE WORK

We discuss future work with the limitations of NNVisBuilder as follows:
Support for modifying network structure. Currently, NNVis-

Builder only enables modifications to networks’ parameters and hyper-
parameters. If the developer wants to design an interface to compare the
results of different network structures, they can only generate separate
interfaces for each network and compare them individually. Modifying
the network structure requires deep customization for various types of
networks, and it is an important part of our future work.

Improving performance. NNVisBuilder uses a client-server ar-
chitecture, and visualization is handled by D3. When users apply the
prototype to large-scale networks and datasets or achieve animations by
modifying filters, the real-time performance of the interface cannot be
guaranteed. We plan to migrate visualization to the GPU in the future
to improve performance.

Visual programming. The visual representation of our model may
be used to support visual programming and further reduce the coding
effort. The current representation describes the views and their associ-
ated data, and specifies the interactions among views. This allows most
of the interface specifications to be given in the model representation,
such as the type of view, the exact tensor data, and the type of basic
transformations. In this case, users may only need to write a minimum
of code to specify the complex transformations or overload existing
base classes.

8 CONCLUSION

We proposed NNVisBuilder, a toolkit for rapidly prototyping visual
interfaces for different types of neural networks. The toolkit is designed
with three modules: data, view, and interaction, and users can design
visualizations based on these modules. We also proposed a model for
summarizing and comparing neural network analytic interfaces. The
model can also guide developers in their coding. To demonstrate the
applicability of our model, we provided three example applications
where we developed and analyzed prototypes for different neural net-
work analytic interfaces. Furthermore, we discuss future work with the
limitations of NNVisBuilder. The source code and some example cases
can be found at https://github.com/sysuvis/NVB.

https://github.com/sysuvis/NVB

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of China
through grant 2021YFB0300103, and the National Natural Sci-
ence Foundation of China through grants 61902446, 62172456, and
91937302.

SUPPLEMENTAL MATERIAL

Our paper is associated with the following supplemental materials:

• tutorial.pdf: a step-by-step tutorial for building an interface with
NNVisBuilder.

• manual.pdf: an introduction to the modules, principles, and API
references of NNVisBuilder.

• video.mp4: a video demonstrating the example in the tutorial and
the construction of LSTMVis prototype.

REFERENCES

[1] G. Alicioglu and B. Sun. A survey of visual analytics for explainable
artificial intelligence methods. Computers & Graphics, 102:502–520,
2022. doi: 10.1016/j.cag.2021.09.002 1, 2

[2] S. Amershi, J. Fogarty, A. Kapoor, and D. Tan. Examining multiple
potential models in End-User interactive concept learning. In Proceed-
ings of SIGCHI Conference on Human Factors in Computing Systems, p.
1357–1360. ACM, New York, 2010. doi: 10.1145/1753326.1753531 2

[3] M. Bostock, V. Ogievetsky, and J. Heer. D³ data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/TVCG.2011.185 1, 2, 5, 9

[4] J. Chae, S. Gao, A. Ramanathan, C. A. Steed, and G. Tourassi. Visualiza-
tion for Classification in Deep Neural Networks. In Workshop on Visual
Analytics for Deep Learning. IEEE, October 2017. 2

[5] F. Cheng, Y. Ming, and H. Qu. DECE: Decision explorer with counter-
factual explanations for machine learning models. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1438–1447, 2021. doi: 10.
1109/TVCG.2020.3030342 2, 3

[6] J. Choo and S. Liu. Visual analytics for explainable deep learning. IEEE
Computer Graphics and Applications, 38(4):84–92, 2018. doi: 10.1109/
MCG.2018.042731661 2

[7] S. Chung, S. Suh, C. Park, K. Kang, J. Choo, and B. C. Kwon. ReVACNN:
Real-Time visual analytics for convolutional neural network. In Proceed-
ings of ACM SIGKDD Workshop on Interactive Data Exploration and
Analytics, vol. 14, 2016. 2

[8] N. Das, H. Park, Z. J. Wang, F. Hohman, R. Firstman, E. Rogers, and
D. H. P. Chau. Bluff: Interactively deciphering adversarial attacks on
deep neural networks. In Proceedings of IEEE Visualization Conference,
pp. 271–275. IEEE, Salt Lake City, 2020. doi: 10.1109/VIS47514.2020.
00061 2, 3

[9] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer
features of a deep network. Technical Report, Univeristé de Montréal,
1341(3):1, 2009. 1, 2

[10] O. Gomez, S. Holter, J. Yuan, and E. Bertini. AdViCE: Aggregated visual
counterfactual explanations for machine learning model validation. In
Proceedings of IEEE Visualization Conference, pp. 31–35. IEEE, New
Orleans, 2021. doi: 10.1109/VIS49827.2021.9623271 2, 3

[11] A. W. Harley. An interactive Node-Link visualization of convolutional
neural networks. In Proceedings of Advances in Visual Computing, pp.
867–877. Springer, Cham, 2015. doi: 10.1007/978-3-319-27857-5_77 2

[12] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, 2019. doi: 10
.1109/TVCG.2018.2843369 1, 2

[13] B. Hoover, H. Strobelt, and S. Gehrmann. exBERT: A Visual Anal-
ysis Tool to Explore Learned Representations in Transformer Models.
In Proceedings of Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 187–196. Association for Compu-
tational Linguistics, Online, July 2020. doi: 10.18653/v1/2020.acl-demos.
22 2, 3

[14] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, 9(03):90–95, 2007. doi: 10.1109/MCSE.2007.55
2

[15] Z. Jin, Y. Wang, Q. Wang, Y. Ming, T. Ma, and H. Qu. GNNLens: A
visual analytics approach for prediction error diagnosis of graph neural

networks. IEEE Transactions on Visualization and Computer Graphics,
29(6):3024–3038, 2023. doi: 10.1109/TVCG.2022.3148107 2, 3

[16] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and Understanding
Recurrent Networks. CoRR, abs/1506.02078, 2015. doi: 10.48550/arXiv.
1506.02078 2

[17] B. La Rosa, G. Blasilli, R. Bourqui, D. Auber, G. Santucci, R. Capobianco,
E. Bertini, R. Giot, and M. Angelini. State of the art of visual analytics
for explainable deep learning. Computer Graphics Forum, 42(1):319–355,
2023. doi: 10.1111/cgf.14733 1, 2

[18] J. K. Li and K.-L. Ma. P4: Portable parallel processing pipelines for
interactive information visualization. IEEE Transactions on Visualization
and Computer Graphics, 26(3):1548–1561, 2020. doi: 10.1109/TVCG.
2018.2871139 2

[19] J. K. Li and K.-L. Ma. P5: Portable progressive parallel processing
pipelines for interactive data analysis and visualization. IEEE Transactions
on Visualization and Computer Graphics, 26(1):1151–1160, 2020. doi: 10
.1109/TVCG.2019.2934537 2

[20] J. K. Li and K.-L. Ma. P6: A declarative language for integrating machine
learning in visual analytics. IEEE Transactions on Visualization and
Computer Graphics, 27(2):380–389, 2021. doi: 10.1109/TVCG.2020.
3030453 2

[21] Y. Li, J. Wang, T. Fujiwara, and K.-L. Ma. Visual analytics of neu-
ron vulnerability to adversarial attacks on convolutional neural networks.
ACM Transactions on Interactive Intelligent Systems, 2023. doi: 10.1145/
3587470 2

[22] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness
of deep neural networks. In Proceedings of IEEE Conference on Visual
Analytics Science and Technology, pp. 60–71. IEEE, Berlin, 2018. doi: 10.
1109/VAST.2018.8802509 1, 2, 3

[23] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017. doi: 10.1109/TVCG.2016.
2598831 2, 3

[24] W. McKinney et al. pandas: a foundational python library for data analysis
and statistics. Python for high performance and scientific computing,
14(9):1–9, 2011. 6

[25] P. Migdał, J. Chapman, S. Paul, and R. RV. torchviz: a package for
neural network visualization and debugging. https://github.com/
szagoruyko/pytorchviz, 2019. Accessed on: 2023-03-24. 1

[26] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Under-
standing hidden memories of recurrent neural networks. In 2017 IEEE
Conference on Visual Analytics Science and Technology, pp. 13–24. IEEE,
Phoenix, 2017. doi: 10.1109/VAST.2017.8585721 2, 3

[27] F. Ojo, R. A. Rossi, J. Hoffswell, S. Guo, F. Du, S. Kim, C. Xiao,
and E. Koh. VisGNN: Personalized visualization recommendation via
graph neural networks. In Proceedings of the ACM Web Conference, p.
2810–2818. ACM, New York, 2022. doi: 10.1145/3485447.3512001 2

[28] J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim. An approach
to supporting incremental visual data classification. IEEE Transactions
on Visualization and Computer Graphics, 21(1):4–17, 2015. doi: 10.
1109/TVCG.2014.2331979 2

[29] C. Park, S. Yang, I. Na, S. Chung, S. Shin, B. C. Kwon, D. Park, and
J. Choo. VATUN: Visual Analytics for Testing and Understanding Convo-
lutional Neural Networks. In Proceedings of EuroVis Short Papers. The
Eurographics Association, 2021. doi: 10.2312/evs.20211047 2

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Proceedings of Advances in Neural Information
Processing Systems: Annual Conference on Neural Information Processing
Systems, pp. 8024–8035, 2019. doi: 10.48550/arXiv.1912.01703 5

[31] L. Roeder. Netron. Computer software, n.d. 1
[32] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:

A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030 2

[33] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2016. doi: 10.1109/TVCG.2015.2467091 2

[34] Q. Shen, Y. Wu, Y. Jiang, W. Zeng, A. K. H. LAU, A. Vianova, and H. Qu.
Visual interpretation of recurrent neural network on multi-dimensional

https://doi.org/10.1016/j.cag.2021.09.002
https://doi.org/10.1145/1753326.1753531
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1109/VIS47514.2020.00061
https://doi.org/10.1109/VIS47514.2020.00061
https://doi.org/10.1109/VIS49827.2021.9623271
https://doi.org/10.1007/978-3-319-27857-5_77
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/TVCG.2022.3148107
https://doi.org/10.48550/arXiv.1506.02078
https://doi.org/10.48550/arXiv.1506.02078
https://doi.org/10.1111/cgf.14733
https://doi.org/10.1109/TVCG.2018.2871139
https://doi.org/10.1109/TVCG.2018.2871139
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2020.3030453
https://doi.org/10.1109/TVCG.2020.3030453
https://doi.org/10.1145/3587470
https://doi.org/10.1145/3587470
https://doi.org/10.1109/VAST.2018.8802509
https://doi.org/10.1109/VAST.2018.8802509
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831
https://github.com/szagoruyko/pytorchviz
https://github.com/szagoruyko/pytorchviz
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1145/3485447.3512001
https://doi.org/10.1109/TVCG.2014.2331979
https://doi.org/10.1109/TVCG.2014.2331979
https://doi.org/10.2312/evs.20211047
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091

time-series forecast. In Proceedings of IEEE Pacific Visualization Sympo-
sium, pp. 61–70. IEEE, Tianjin, 2020. doi: 10.1109/PacificVis48177.2020
.2785 2

[35] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In
Y. Bengio and Y. LeCun, eds., Proceedings of International Conference on
Learning Representations (Workshop), 2014. doi: 10.48550/arXiv.1312.
6034 1, 2

[36] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. TensorFlow
Playground. https://playground.tensorflow.org/, 2017. 1, 2, 3,
7

[37] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence
models. IEEE Transactions on Visualization and Computer Graphics,
25(1):353–363, 2019. doi: 10.1109/TVCG.2018.2865044 1, 2, 3

[38] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.
IEEE Transactions on Visualization and Computer Graphics, 24(1):667–
676, 2018. doi: 10.1109/TVCG.2017.2744158 1, 2, 3, 4

[39] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu. A survey of visual
analytics techniques and applications: State-of-the-art research and future
challenges. Journal of Computer Science and Technology, 28:852–867,
2013. doi: 10.1007/s11390-013-1383-8 2

[40] F.-Y. Tzeng and K.-L. Ma. Opening the black box - data driven visu-
alization of neural networks. In Proceedings of IEEE Visualization, pp.
383–390. IEEE, Minneapolis, 2005. doi: 10.1109/VISUAL.2005.1532820
2

[41] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9(86):2579–2605, 2008. 2

[42] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Altair:
Interactive Statistical Visualizations for Python. Journal of open source
software, 3(32):1057, 2018. doi: 10.21105/joss.01057 2

[43] J. Vig. A multiscale visualization of attention in the transformer model.
CoRR, abs/1906.05714, 2019. doi: 10.48550/arXiv.1906.05714 2

[44] J. Wang, L. Gou, H. Yang, and H.-W. Shen. GANViz: A visual analytics
approach to understand the adversarial game. IEEE Transactions on
Visualization and Computer Graphics, 24(6):1905–1917, 2018. doi: 10.
1109/TVCG.2018.2816223 1, 2, 3

[45] Z. J. Wang, R. Turko, and D. H. Chau. Dodrio: Exploring transformer
models with interactive visualization. CoRR, abs/2103.14625, 2021. doi:
10.48550/arXiv.2103.14625 2, 3

[46] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng,
and D. H. Polo Chau. CNN explainer: Learning convolutional neural net-
works with interactive visualization. IEEE Transactions on Visualization
and Computer Graphics, 27(2):1396–1406, 2021. doi: 10.1109/TVCG.
2020.3030418 2, 3

[47] H. Wickham. ggplot2. WIREs Computational Statistics, 3(2):180–185,
2011. doi: 10.1002/wics.147 2

[48] X. Xuan, X. Zhang, O.-H. Kwon, and K.-L. Ma. VAC-CNN: A visual
analytics system for comparative studies of deep convolutional neural
networks. IEEE Transactions on Visualization and Computer Graphics,
28(6):2326–2337, 2022. doi: 10.1109/TVCG.2022.3165347 3

[49] J. Yosinski, J. Clune, A. M. Nguyen, T. J. Fuchs, and H. Lipson.
Understanding neural networks through deep visualization. CoRR,
abs/1506.06579, 2015. doi: 10.48550/arXiv.1506.06579 1, 2

[50] J. Zhao, Z. Dai, P. Xu, and L. Ren. ProtoViewer: Visual interpretation
and diagnostics of deep neural networks with factorized prototypes. In
Proceedings of IEEE Visualization Conference, pp. 286–290. IEEE, Salt
Lake City, 2020. doi: 10.1109/VIS47514.2020.00064 3

https://doi.org/10.1109/PacificVis48177.2020.2785
https://doi.org/10.1109/PacificVis48177.2020.2785
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1312.6034
https://playground.tensorflow.org/
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2017.2744158
https://doi.org/10.1007/s11390-013-1383-8
https://doi.org/10.1109/VISUAL.2005.1532820
https://doi.org/10.21105/joss.01057
https://doi.org/10.48550/arXiv.1906.05714
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.48550/arXiv.2103.14625
https://doi.org/10.48550/arXiv.2103.14625
https://doi.org/10.1109/TVCG.2020.3030418
https://doi.org/10.1109/TVCG.2020.3030418
https://doi.org/10.1002/wics.147
https://doi.org/10.1109/TVCG.2022.3165347
https://doi.org/10.48550/arXiv.1506.06579
https://doi.org/10.1109/VIS47514.2020.00064

	Introduction
	Related Work
	Vis4AI
	Visualization System

	Design of the model
	Foundational Model Framework
	Literature Review
	Our Model
	An Illustrative Example: Prototyping LSTMVis

	Programming Toolkit
	Overview
	Data and View
	Transformation
	Interaction

	Evaluation
	TensorFlow Playground
	Customized CNN Visualization

	Target Users and Usage Guide
	Limitations and Future Work
	Conclusion

